Open Access
Open access
том 16 издание 3 страницы 1127

Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network

Тип публикацииJournal Article
Дата публикации2023-01-28
scimago Q2
wos Q2
БС1
SJR0.614
CiteScore6.4
Impact factor3.2
ISSN19961944
General Materials Science
Краткое описание

The Arrhenius crossover temperature, TA, corresponds to a thermodynamic state wherein the atomistic dynamics of a liquid becomes heterogeneous and cooperative; and the activation barrier of diffusion dynamics becomes temperature-dependent at temperatures below TA. The theoretical estimation of this temperature is difficult for some types of materials, especially silicates and borates. In these materials, self-diffusion as a function of the temperature T is reproduced by the Arrhenius law, where the activation barrier practically independent on the temperature T. The purpose of the present work was to establish the relationship between the Arrhenius crossover temperature TA and the physical properties of liquids directly related to their glass-forming ability. Using a machine learning model, the crossover temperature TA was calculated for silicates, borates, organic compounds and metal melts of various compositions. The empirical values of the glass transition temperature Tg, the melting temperature Tm, the ratio of these temperatures Tg/Tm and the fragility index m were applied as input parameters. It has been established that the temperatures Tg and Tm are significant parameters, whereas their ratio Tg/Tm and the fragility index m do not correlate much with the temperature TA. An important result of the present work is the analytical equation relating the temperatures Tg, Tm and TA, and that, from the algebraic point of view, is the equation for a second-order curved surface. It was shown that this equation allows one to correctly estimate the temperature TA for a large class of materials, regardless of their compositions and glass-forming abilities.

Найдено 
Найдено 

Топ-30

Журналы

1
2
Applied Sciences (Switzerland)
2 публикации, 14.29%
Materials
2 публикации, 14.29%
High Energy Chemistry
2 публикации, 14.29%
Metals
1 публикация, 7.14%
Polymers
1 публикация, 7.14%
Crystals
1 публикация, 7.14%
Fuel
1 публикация, 7.14%
Metal Science and Heat Treatment
1 публикация, 7.14%
Journal of Physical Chemistry B
1 публикация, 7.14%
Springer Proceedings in Physics
1 публикация, 7.14%
Physica Scripta
1 публикация, 7.14%
1
2

Издатели

1
2
3
4
5
6
7
MDPI
7 публикаций, 50%
Springer Nature
2 публикации, 14.29%
Pleiades Publishing
2 публикации, 14.29%
Elsevier
1 публикация, 7.14%
American Chemical Society (ACS)
1 публикация, 7.14%
IOP Publishing
1 публикация, 7.14%
1
2
3
4
5
6
7
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
14
Поделиться
Цитировать
ГОСТ |
Цитировать
Galimzyanov B. N. et al. Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network // Materials. 2023. Vol. 16. No. 3. p. 1127.
ГОСТ со всеми авторами (до 50) Скопировать
Galimzyanov B. N., Doronina M. A., Mokshin A. V. Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network // Materials. 2023. Vol. 16. No. 3. p. 1127.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/ma16031127
UR - https://doi.org/10.3390/ma16031127
TI - Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network
T2 - Materials
AU - Galimzyanov, Bulat N.
AU - Doronina, Maria A.
AU - Mokshin, Anatolii V.
PY - 2023
DA - 2023/01/28
PB - MDPI
SP - 1127
IS - 3
VL - 16
PMID - 36770134
SN - 1996-1944
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Galimzyanov,
author = {Bulat N. Galimzyanov and Maria A. Doronina and Anatolii V. Mokshin},
title = {Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network},
journal = {Materials},
year = {2023},
volume = {16},
publisher = {MDPI},
month = {jan},
url = {https://doi.org/10.3390/ma16031127},
number = {3},
pages = {1127},
doi = {10.3390/ma16031127}
}
MLA
Цитировать
Galimzyanov, Bulat N., et al. “Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network.” Materials, vol. 16, no. 3, Jan. 2023, p. 1127. https://doi.org/10.3390/ma16031127.