Open Access
Open access
Machines, volume 10, issue 8, pages 649

Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition and Genetic Algorithm-Optimized Wavelet Threshold Denoising

Publication typeJournal Article
Publication date2022-08-04
Journal: Machines
scimago Q2
SJR0.474
CiteScore3.0
Impact factor2.1
ISSN20751702
Electrical and Electronic Engineering
Computer Science (miscellaneous)
Mechanical Engineering
Industrial and Manufacturing Engineering
Control and Systems Engineering
Control and Optimization
Abstract

Fault diagnosis of rolling bearings can be a serious challenge, as rolling bearings often work under complex conditions and their vibration signals are typically nonlinear and nonstationary. This paper proposes a novel approach to diagnosing faults of rolling bearings based on variational mode decomposition (VMD) and genetic algorithm-optimized wavelet threshold denoising. First, VMD was used to decompose the vibration signals of faulty rolling bearings into a series of band-limited intrinsic mode functions (BLIMFs). During the decomposition, the parameters of VMD were selected by Kullback–Leibler (K–L) divergence. Then, the effective BLIMFs were determined by the analysis of their correlation coefficients and variance contributions. Finally, genetic algorithm-optimized wavelet threshold denoising was proposed to optimize the selection of important parameters, and the optimized threshold function used not only ensures the continuity of the threshold function but also avoids the fixed deviation of the soft threshold. The validity and superiority of the proposed approach were verified by theoretical calculations, numerical simulations and application studies. The results indicate that the proposed approach is promising in fault diagnosis of rotary machinery.

Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?