Open Access
Open access
Mathematics, volume 10, issue 14, pages 2494

Leveraging Geographically Distributed Data for Influenza and SARS-CoV-2 Non-Parametric Forecasting

Publication typeJournal Article
Publication date2022-07-18
Journal: Mathematics
scimago Q2
SJR0.475
CiteScore4.0
Impact factor2.3
ISSN22277390
General Mathematics
Computer Science (miscellaneous)
Engineering (miscellaneous)
Abstract

The evolution of some epidemics, such as influenza, demonstrates common patterns both in different regions and from year to year. On the contrary, epidemics such as the novel COVID-19 show quite heterogeneous dynamics and are extremely susceptible to the measures taken to mitigate their spread. In this paper, we propose empirical dynamic modeling to predict the evolution of influenza in Spain’s regions. It is a non-parametric method that looks into the past for coincidences with the present to make the forecasts. Here, we extend the method to predict the evolution of other epidemics at any other starting territory and we also test this procedure with Spanish COVID-19 data. We finally build influenza and COVID-19 networks to check possible coincidences in the geographical distribution of both diseases. With this, we grasp the uniqueness of the geographical dynamics of COVID-19.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?