Open Access
Open access
Mathematics, volume 12, issue 22, pages 3568

Exploring the Percolation Phenomena in Quantum Networks

Publication typeJournal Article
Publication date2024-11-15
Journal: Mathematics
scimago Q2
SJR0.475
CiteScore4.0
Impact factor2.3
ISSN22277390
Abstract

Quantum entanglement as a non-local correlation between particles is critical to the transmission of quantum information in quantum networks (QNs); the key challenge lies in establishing long-distance entanglement transmission between distant targets. This issue aligns with percolation theory, and as a result, an entanglement distribution scheme called “Classical Entanglement Percolation” (CEP) has been proposed. While this scheme provides an effective framework, “Quantum Entanglement Percolation” (QEP) indicates a lower percolation threshold through quantum preprocessing strategies, which will modify the network topology. Meanwhile, an emerging statistical theory known as “Concurrence Percolation” reveals the unique advantages of quantum networks, enabling entanglement transmission under lower conditions. It fundamentally belongs to a different universality class from classical percolation. Although these studies have made significant theoretical advancements, most are based on an idealized pure state network model. In practical applications, quantum states are often affected by thermal noise, resulting in mixed states. When these mixed states meet specific conditions, they can be transformed into pure states through quantum operations and further converted into singlets with a certain probability, thereby facilitating entanglement percolation in mixed state networks. This finding greatly broadens the application prospects of quantum networks. This review offers a comprehensive overview of the fundamental theories of quantum percolation and the latest cutting-edge research developments.

  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?