Quaternion Fractional Fourier Transform: Bridging Signal Processing and Probability Theory
The one-dimensional quaternion fractional Fourier transform (1DQFRFT) introduces a fractional-order parameter that extends traditional Fourier transform techniques, providing new insights into the analysis of quaternion-valued signals. This paper presents a rigorous theoretical foundation for the 1DQFRFT, examining essential properties such as linearity, the Plancherel theorem, conjugate symmetry, convolution, and a generalized Parseval’s theorem that collectively demonstrate the transform’s analytical power. We further explore the 1DQFRFT’s unique applications to probabilistic methods, particularly for modeling and analyzing stochastic processes within a quaternionic framework. By bridging quaternionic theory with probability, our study opens avenues for advanced applications in signal processing, communications, and applied mathematics, potentially driving significant advancements in these fields.