Open Access
Open access
Molecules, volume 29, issue 24, pages 6014

Mechanism of Efficient Smithsonite Flotation with a Ternary Composite Collector Under Sulfur-Free Conditions

Publication typeJournal Article
Publication date2024-12-20
Journal: Molecules
scimago Q1
SJR0.744
CiteScore7.4
Impact factor4.2
ISSN14203049
Abstract

The increasing demand for zinc resources and the declining availability of sulfide zinc ore reserves have made the efficient utilization of zinc oxide a topic of considerable interest. In this study, a ternary composite collector ABN (Al-BHA-NaOL system) was applied to the direct flotation of smithsonite. Micro-flotation studies showed that at pH 9, ABN exhibited better adsorption on smithsonite, achieving a recovery rate of 80.62%. Visual MINTEQ 3.1 and zeta potential analysis confirmed that ABN predominantly reacted with Zn(OH)2(aq) on the surface of smithsonite. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis results elucidated the formation of Al-O bonds through chemical adsorption on the smithsonite surface. Additionally, powder contact angle measurements indicated that ABN enhances the surface contact angle of smithsonite. These results illuminate that ABN is adsorbed by reacting with O sites on hydroxylated metal ions on the smithsonite surface, with Al serving as the adsorption center, thereby achieving separation and purification. Due to ABN’s adsorption characteristics, smithsonite can achieve efficient and clean direct flotation recovery without sulfidization.

Found 
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?