Open Access
Open access
Nanomaterials, volume 15, issue 6, pages 472

Recent Advances in Nanostructured Perovskite Oxide Synthesis and Application for Electrocatalysis

Publication typeJournal Article
Publication date2025-03-20
Journal: Nanomaterials
scimago Q1
wos Q2
SJR0.798
CiteScore8.5
Impact factor4.4
ISSN20794991
Abstract

Nanostructured materials have garnered significant attention for their unique properties, such as the high surface area and enhanced reactivity, making them ideal for electrocatalysis. Among these, perovskite oxides, with compositional and structural flexibility, stand out for their remarkable catalytic performance in energy conversion and storage technologies. Their diverse composition and tunable electronic structures make them promising candidates for key electrochemical reactions, including the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and carbon dioxide reduction (CO2RR). Nanostructured perovskites offer advantages such as high intrinsic activity and enhanced mass/charge transport, which are crucial for improving electrocatalytic performance. In view of the rapid development of nanostructured perovskites over past few decades, this review aims to provide a detailed evaluation of their synthesis methods, including the templating (soft, hard, colloidal), hydrothermal treatments, electrospinning, and deposition approaches. In addition, in-depth evaluations of the fundamentals, synthetic strategies, and applications of nanostructured perovskite oxides for OER, HER, and CO2RR are highlighted. While progress has been made, further research is needed to expand the synthetic methods to create more complex perovskite structures and improve the mass-specific activity and stability. This review offers insights into the potential of nanostructured perovskite oxides in electrocatalysis and provides potential perspectives for the ongoing research endeavor on the nanostructural engineering of perovskites.

Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?