Flat Emission Silicon Nitride Grating Couplers for Lidar Optical Antennas
Light detection and ranging (Lidar) is a key enabling technology for autonomous vehicles and drones. Its emerging implementations are based on photonic integrated circuits (PICs) and optical phased arrays (OPAs). In this work, we introduce a novel approach to the design of OPA Lidar antennas based on Si3N4 grating couplers. The well-established TriPleX platform and the asymmetric double stripe waveguide geometry with full etching are employed, ensuring low complexity and simple fabrication combined with the low-loss advantages of the platform. The design study aims to optimize the performance of the grating coupler-based radiators as well as the OPA, thus enhancing the overall capabilities of Si3N4-based Lidar. Uniform and non-uniform grating structures are considered, achieving θ and φ angle divergences of 0.9° and 32° and 0.54° and 25.41°, respectively. Also, wavelength sensitivity of 7°/100 nm is achieved. Lastly, the fundamental OPA parameters are investigated, and 35 dBi of peak directivity is achieved for an eight-element OPA.