Anion-Exchange Strategy for Ru/RuO2-Embedded N/S-Co-Doped Porous Carbon Composites for Electrochemical Nitrogen Fixation
Ionic porous polymers have been widely utilized efficiently to anchor various metal atoms for the preparation of metal-embedded heteroatom-doped porous carbon composites as the active materials for electrocatalytic applications. However, the rational design of the heteroatom and metal elements in HPC-based composites remains a significant challenge, due to the tendency of the aggregation of metal nanoparticles during pyrolysis. In this study, a nitrogen (N)- and sulfur (S)-enriched ionic covalent organic framework (iCOF) incorporating viologen and thieno[3,4-b] thiophene (TbT) was constructed via Zincke-type polycondensation. The synthesized iCOF possesses a crystalline porous structure with a pore size of 3.05 nm, a low optical band gap of 1.88 eV, and superior ionic conductivity of 10−2.672 S cm−1 at 333 K, confirming the ionic and conjugated nature of our novel iCOF. By applying the iCOF as the precursor, a ruthenium and ruthenium(IV) oxide (Ru/RuO2) nanoparticle-embedded N/S-co-doped porous carbon composite (NSPC-Ru) was prepared by using a two-step sequence of anion-exchange and pyrolysis processes. In the electrochemical nitrogen reduction reaction (eNRR) application, the NSPC-Ru achieves an impressive NH3 yield rate of 32.0 μg h−1 mg−1 and a Faradaic efficiency of 13.2% at −0.34 V vs. RHE. Thus, this innovative approach proposes a new route for the design of iCOF-derived metal-embedded porous carbon composites for enhanced NRR performance.