Molecular Simulation of Ultra-Microstructural Characteristics of Adsorption Pores in Terms of Coal and Gas Adsorption Properties
To investigate the ultra-microstructural characteristics and adsorption properties of coal pores, the pore structure of Dongsheng lignite and Chengzhuang anthracite in Qinshui Basin was characterized by the liquid nitrogen adsorption method. It was found that the SSA of micropores constituted more than 65% of the total SSA in both coal samples. The macromolecular model of coal and the N2 molecular probe were used to obtain the ultrastructure parameters, and the gas adsorption behaviors of the two coals under different conditions were simulated by Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD). The results show that the pores of the lignite are mainly small pores, while the pores of the anthracite are mainly micropores. The specific surface area of the adsorption pores mainly constitutes micropores and ultra-micropores. The adsorption capacity of the CH4 of anthracite is consistently higher than that of lignite. The CH4 adsorption amount is positively correlated with the specific surface area and pore volume. This indicates that the gas adsorption capacity of coal is concentrated in micropores and ultra-micropores. The adsorption capacity increases with the increase in pressure and decreases with the increase in temperature. In the competitive adsorption of CH4/CO2/H2O, the adsorption quantity is in the order of H2O > CO2 > CH4. The research results provide a theoretical basis for coalbed methane exploitation and methane replacement.