Open Access
Open access
Remote Sensing, volume 12, issue 10, pages 1667

Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends

Publication typeJournal Article
Publication date2020-05-22
Journal: Remote Sensing
scimago Q1
SJR1.091
CiteScore8.3
Impact factor4.2
ISSN20724292, 23154632, 23154675
General Earth and Planetary Sciences
Abstract

Deep learning (DL) has great influence on large parts of science and increasingly established itself as an adaptive method for new challenges in the field of Earth observation (EO). Nevertheless, the entry barriers for EO researchers are high due to the dense and rapidly developing field mainly driven by advances in computer vision (CV). To lower the barriers for researchers in EO, this review gives an overview of the evolution of DL with a focus on image segmentation and object detection in convolutional neural networks (CNN). The survey starts in 2012, when a CNN set new standards in image recognition, and lasts until late 2019. Thereby, we highlight the connections between the most important CNN architectures and cornerstones coming from CV in order to alleviate the evaluation of modern DL models. Furthermore, we briefly outline the evolution of the most popular DL frameworks and provide a summary of datasets in EO. By discussing well performing DL architectures on these datasets as well as reflecting on advances made in CV and their impact on future research in EO, we narrow the gap between the reviewed, theoretical concepts from CV and practical application in EO.

Found 
Found 

Top-30

Journals

5
10
15
20
25
30
35
40
45
50
5
10
15
20
25
30
35
40
45
50

Publishers

10
20
30
40
50
60
70
80
90
10
20
30
40
50
60
70
80
90
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?