Open Access
Open access
том 15 издание 7 страницы 1720

Machine Learning Models for Approximating Downward Short-Wave Radiation Flux over the Ocean from All-Sky Optical Imagery Based on DASIO Dataset

Тип публикацииJournal Article
Дата публикации2023-03-23
scimago Q1
wos Q1
БС1
SJR1.019
CiteScore8.6
Impact factor4.1
ISSN20724292, 23154632, 23154675
General Earth and Planetary Sciences
Краткое описание

Downward short-wave (SW) solar radiation is the only essential energy source powering the atmospheric dynamics, ocean dynamics, biochemical processes, and so forth on our planet. Clouds are the main factor limiting the SW flux over the land and the Ocean. For the accurate meteorological measurements of the SW flux one needs expensive equipment-pyranometers. For some cases where one does not need golden-standard quality of measurements, we propose estimating incoming SW radiation flux using all-sky optical RGB imagery which is assumed to incapsulate the whole information about the downward SW flux. We used DASIO all-sky imagery dataset with corresponding SW downward radiation flux measurements registered by an accurate pyranometer. The dataset has been collected in various regions of the World Ocean during several marine campaigns from 2014 to 2021, and it will be updated. We demonstrate the capabilities of several machine learning models in this problem, namely multilinear regression, Random Forests, Gradient Boosting and convolutional neural networks (CNN). We also applied the inverse target frequency (ITF) re-weighting of the training subset in an attempt of improving the SW flux approximation quality. We found that the CNN is capable of approximating downward SW solar radiation with higher accuracy compared to existing empiric parameterizations and known algorithms based on machine learning methods for estimating downward SW flux using remote sensing (MODIS) imagery. The estimates of downward SW radiation flux using all-sky imagery may be of particular use in case of the need for the fast radiative budgets assessment of a site.

Найдено 
Найдено 

Топ-30

Журналы

1
2
Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika)
2 публикации, 50%
IEEE Transactions on Geoscience and Remote Sensing
1 публикация, 25%
Journal of Oceanological Research
1 публикация, 25%
1
2

Издатели

1
2
Allerton Press
2 публикации, 50%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 25%
P.P. Shirshov Institute of Oceanology, RAS
1 публикация, 25%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
4
Поделиться
Цитировать
ГОСТ |
Цитировать
Krinitskiy M. et al. Machine Learning Models for Approximating Downward Short-Wave Radiation Flux over the Ocean from All-Sky Optical Imagery Based on DASIO Dataset // Remote Sensing. 2023. Vol. 15. No. 7. p. 1720.
ГОСТ со всеми авторами (до 50) Скопировать
Krinitskiy M., Koshkina V., Borisov M., Anikin N., Gulev S. K., Artemeva M. Machine Learning Models for Approximating Downward Short-Wave Radiation Flux over the Ocean from All-Sky Optical Imagery Based on DASIO Dataset // Remote Sensing. 2023. Vol. 15. No. 7. p. 1720.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/rs15071720
UR - https://doi.org/10.3390/rs15071720
TI - Machine Learning Models for Approximating Downward Short-Wave Radiation Flux over the Ocean from All-Sky Optical Imagery Based on DASIO Dataset
T2 - Remote Sensing
AU - Krinitskiy, Mikhail
AU - Koshkina, Vasilisa
AU - Borisov, Mikhail
AU - Anikin, Nikita
AU - Gulev, S. K.
AU - Artemeva, Maria
PY - 2023
DA - 2023/03/23
PB - MDPI
SP - 1720
IS - 7
VL - 15
SN - 2072-4292
SN - 2315-4632
SN - 2315-4675
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Krinitskiy,
author = {Mikhail Krinitskiy and Vasilisa Koshkina and Mikhail Borisov and Nikita Anikin and S. K. Gulev and Maria Artemeva},
title = {Machine Learning Models for Approximating Downward Short-Wave Radiation Flux over the Ocean from All-Sky Optical Imagery Based on DASIO Dataset},
journal = {Remote Sensing},
year = {2023},
volume = {15},
publisher = {MDPI},
month = {mar},
url = {https://doi.org/10.3390/rs15071720},
number = {7},
pages = {1720},
doi = {10.3390/rs15071720}
}
MLA
Цитировать
Krinitskiy, Mikhail, et al. “Machine Learning Models for Approximating Downward Short-Wave Radiation Flux over the Ocean from All-Sky Optical Imagery Based on DASIO Dataset.” Remote Sensing, vol. 15, no. 7, Mar. 2023, p. 1720. https://doi.org/10.3390/rs15071720.