Open Access
Open access
Remote Sensing, volume 16, issue 12, pages 2237

Estimating Pavement Condition by Leveraging Crowdsourced Data

Yangsong Gu 1
Mohammad Khojastehpour 1
Xiaoyang Jia 2
Lee D. Han 1
Publication typeJournal Article
Publication date2024-06-20
Journal: Remote Sensing
scimago Q1
SJR1.091
CiteScore8.3
Impact factor4.2
ISSN20724292, 23154632, 23154675
Abstract

Monitoring pavement conditions is critical to pavement management and maintenance. Traditionally, pavement distress is mainly identified via accelerometers, videos, and laser scanning. However, the geographical coverage and temporal frequency are constrained by the limited amount of equipment and labor, which sometimes may delay road maintenance. By contrast, crowdsourced data, in a manner of crowdsensing, can provide real-time and valuable roadway information for extensive coverage. This study exploited crowdsourced Waze pothole and weather reports for pavement condition evaluation. Two surrogate measures are proposed, namely, the Pothole Report Density (PRD) and the Weather Report Density (WRD). They are compared with the Pavement Quality Index (PQI), which is calculated using laser truck data from the Tennessee Department of Transportation (TDOT). A geographically weighted random forest (GWRF) model was developed to capture the complicated relationships between the proposed measures and PQI. The results show that the PRD is highly correlated with the PQI, and the correlation also varies across the routes. It is also found to be the second most important factor (i.e., followed by pavement age) affecting the PQI values. Although Waze weather reports contribute to PQI values, their impact is significantly smaller compared to that of pothole reports. This paper demonstrates that surrogate pavement condition measures aggregated by crowdsourced data could be integrated into the state decision-making process by establishing nuanced relationships between the surrogated performance measures and the state pavement condition indices. The endeavor of this study also has the potential to enhance the granularity of pavement condition evaluation.

Found 
Found 

Top-30

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?