Open Access
Open access
Remote Sensing, volume 16, issue 22, pages 4175

Enhanced YOLOv8-Based Model with Context Enrichment Module for Crowd Counting in Complex Drone Imagery

Abdullah N Al Hawsawi 1
Sultan Daud Khan 2
Faizan Ur Rehman 3
2
 
Department of Computer Science, National University of Technology, Islamabad 44000, Pakistan
3
 
Saudi Data and Artificial Intelligence Authority, Riyadh 11525, Saudi Arabia
Publication typeJournal Article
Publication date2024-11-08
Journal: Remote Sensing
scimago Q1
SJR1.091
CiteScore8.3
Impact factor4.2
ISSN20724292, 23154632, 23154675
Abstract

Crowd counting in aerial images presents unique challenges due to varying altitudes, angles, and cluttered backgrounds. Additionally, the small size of targets, often occupying only a few pixels in high-resolution images, further complicates the problem. Current crowd counting models struggle in these complex scenarios, leading to inaccurate counts, which are crucial for crowd management. Moreover, these regression-based models only provide the total count without indicating the location or distribution of people within the environment, limiting their practical utility. While YOLOv8 has achieved significant success in detecting small targets within aerial imagery, it faces challenges when directly applied to crowd counting tasks in such contexts. To overcome these challenges, we propose an improved framework based on YOLOv8, incorporating a context enrichment module (CEM) to capture multiscale contextual information. This enhancement improves the model’s ability to detect and localize tiny targets in complex aerial images. We assess the effectiveness of the proposed framework on the challenging VisDrone-CC2021 dataset, and our experimental results demonstrate the effectiveness of this approach.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?