Open Access
Open access
Sensors, volume 20, issue 19, pages 5564

An Automated Machine-Learning Approach for Road Pothole Detection Using Smartphone Sensor Data

Publication typeJournal Article
Publication date2020-09-28
Journal: Sensors
scimago Q1
SJR0.786
CiteScore7.3
Impact factor3.4
ISSN14243210, 14248220
PubMed ID:  32998427
Biochemistry
Analytical Chemistry
Atomic and Molecular Physics, and Optics
Electrical and Electronic Engineering
Instrumentation
Abstract

Road surface monitoring and maintenance are essential for driving comfort, transport safety and preserving infrastructure integrity. Traditional road condition monitoring is regularly conducted by specially designed instrumented vehicles, which requires time and money and is only able to cover a limited proportion of the road network. In light of the ubiquitous use of smartphones, this paper proposes an automatic pothole detection system utilizing the built-in vibration sensors and global positioning system receivers in smartphones. We collected road condition data in a city using dedicated vehicles and smartphones with a purpose-built mobile application designed for this study. A series of processing methods were applied to the collected data, and features from different frequency domains were extracted, along with various machine-learning classifiers. The results indicated that features from the time and frequency domains outperformed other features for identifying potholes. Among the classifiers tested, the Random Forest method exhibited the best classification performance for potholes, with a precision of 88.5% and recall of 75%. Finally, we validated the proposed method using datasets generated from different road types and examined its universality and robustness.

Found 
Found 

Top-30

Journals

2
4
6
8
10
12
2
4
6
8
10
12

Publishers

5
10
15
20
25
30
35
40
5
10
15
20
25
30
35
40
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?