Open Access
Open access
Sensors, volume 23, issue 13, pages 6187

Machine Learning Approaches in Brillouin Distributed Fiber Optic Sensors

Publication typeJournal Article
Publication date2023-07-06
Journal: Sensors
scimago Q1
SJR0.786
CiteScore7.3
Impact factor3.4
ISSN14243210, 14248220
PubMed ID:  37448034
Biochemistry
Analytical Chemistry
Atomic and Molecular Physics, and Optics
Electrical and Electronic Engineering
Instrumentation
Abstract

This paper presents reported machine learning approaches in the field of Brillouin distributed fiber optic sensors (DFOSs). The increasing popularity of Brillouin DFOSs stems from their capability to continuously monitor temperature and strain along kilometer-long optical fibers, rendering them attractive for industrial applications, such as the structural health monitoring of large civil infrastructures and pipelines. In recent years, machine learning has been integrated into the Brillouin DFOS signal processing, resulting in fast and enhanced temperature, strain, and humidity measurements without increasing the system’s cost. Machine learning has also contributed to enhanced spatial resolution in Brillouin optical time domain analysis (BOTDA) systems and shorter measurement times in Brillouin optical frequency domain analysis (BOFDA) systems. This paper provides an overview of the applied machine learning methodologies in Brillouin DFOSs, as well as future perspectives in this area.

Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
5
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?