Open Access
Open access
Sensors, volume 24, issue 24, pages 8033

Doubly Structured Data Synthesis for Time-Series Energy-Use Data

Jiwoo Kim 1
Changhoon Lee 2
Jehoon Jeon 3
Jungwoong Choi 2
Joseph H T Kim 1, 3
Publication typeJournal Article
Publication date2024-12-16
Journal: Sensors
scimago Q1
SJR0.786
CiteScore7.3
Impact factor3.4
ISSN14243210, 14248220
PubMed ID:  39771768
Abstract

As the demand for efficient energy management increases, the need for extensive, high-quality energy data becomes critical. However, privacy concerns and insufficient data volume pose significant challenges. To address these issues, data synthesis techniques are employed to augment and replace real data. This paper introduces Doubly Structured Data Synthesis (DS2), a novel method to tackle privacy concerns in time-series energy-use data. DS2 synthesizes rate changes to maintain longitudinal information and uses calibration techniques to preserve the cross-sectional mean structure at each time point. Numerical analyses reveal that DS2 surpasses existing methods, such as Conditional Tabular GAN (CTGAN) and Transformer-based Time-Series Generative Adversarial Network (TTS-GAN), in capturing both time-series and cross-sectional characteristics. We evaluated our proposed method using metrics for data similarity, utility, and privacy. The results indicate that DS2 effectively retains the underlying characteristics of real datasets while ensuring adequate privacy protection. DS2 is a valuable tool for sharing and utilizing energy data, significantly enhancing energy demand prediction and management.

Found 
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?