Open Access
Open access
том 24 издание 24 страницы 8121

Extracting Optimal Number of Features for Machine Learning Models in Multilayer IoT Attacks

Тип публикацииJournal Article
Дата публикации2024-12-19
scimago Q1
wos Q2
БС1
SJR0.764
CiteScore8.2
Impact factor3.5
ISSN14243210, 14248220
Краткое описание

The rapid integration of Internet of Things (IoT) systems in various sectors has escalated security risks due to sophisticated multilayer attacks that compromise multiple security layers and lead to significant data loss, personal information theft, financial losses etc. Existing research on multilayer IoT attacks exhibits gaps in real-world applicability, due to reliance on outdated datasets with a limited focus on adaptive, dynamic approaches to address multilayer vulnerabilities. Additionally, the complete reliance on automated processes without integrating human expertise in feature selection and weighting processes may affect the reliability of detection models. Therefore, this research aims to develop a Semi-Automated Intrusion Detection System (SAIDS) that integrates efficient feature selection, feature weighting, normalisation, visualisation, and human–machine interaction to detect and identify multilayer attacks, enhancing mitigation strategies. The proposed framework managed to extract an optimal set of 13 significant features out of 64 in the Edge-IIoT dataset, which is crucial for the efficient detection and classification of multilayer attacks, and also outperforms the performance of the KNN model compared to other classifiers in binary classification. The KNN algorithm demonstrated an average accuracy exceeding 94% in detecting several multilayer attacks such as UDP, ICMP, HTTP flood, MITM, TCP SYN, XSS, SQL injection, etc.

Найдено 
Найдено 

Топ-30

Журналы

1
Electronics (Switzerland)
1 публикация, 33.33%
Discover Artificial Intelligence
1 публикация, 33.33%
1

Издатели

1
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 33.33%
MDPI
1 публикация, 33.33%
Springer Nature
1 публикация, 33.33%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
3
Поделиться
Цитировать
ГОСТ |
Цитировать
Sukhni B. A. et al. Extracting Optimal Number of Features for Machine Learning Models in Multilayer IoT Attacks // Sensors. 2024. Vol. 24. No. 24. p. 8121.
ГОСТ со всеми авторами (до 50) Скопировать
Sukhni B. A., Manna S. K., Dave J. M., Zhang L. Extracting Optimal Number of Features for Machine Learning Models in Multilayer IoT Attacks // Sensors. 2024. Vol. 24. No. 24. p. 8121.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/s24248121
UR - https://www.mdpi.com/1424-8220/24/24/8121
TI - Extracting Optimal Number of Features for Machine Learning Models in Multilayer IoT Attacks
T2 - Sensors
AU - Sukhni, Badeea Al
AU - Manna, Soumya Kanti
AU - Dave, Jugal M.
AU - Zhang, Leishi
PY - 2024
DA - 2024/12/19
PB - MDPI
SP - 8121
IS - 24
VL - 24
PMID - 39771856
SN - 1424-3210
SN - 1424-8220
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Sukhni,
author = {Badeea Al Sukhni and Soumya Kanti Manna and Jugal M. Dave and Leishi Zhang},
title = {Extracting Optimal Number of Features for Machine Learning Models in Multilayer IoT Attacks},
journal = {Sensors},
year = {2024},
volume = {24},
publisher = {MDPI},
month = {dec},
url = {https://www.mdpi.com/1424-8220/24/24/8121},
number = {24},
pages = {8121},
doi = {10.3390/s24248121}
}
MLA
Цитировать
Sukhni, Badeea Al, et al. “Extracting Optimal Number of Features for Machine Learning Models in Multilayer IoT Attacks.” Sensors, vol. 24, no. 24, Dec. 2024, p. 8121. https://www.mdpi.com/1424-8220/24/24/8121.