Open Access
Open access
Sustainability, volume 12, issue 12, pages 5068

Spray Drift Generated in Vineyard during Under-Row Weed Control and Suckering: Evaluation of Direct and Indirect Drift-Reducing Techniques

Publication typeJournal Article
Publication date2020-06-22
Journal: Sustainability
scimago Q1
SJR0.672
CiteScore6.8
Impact factor3.3
ISSN20711050
Renewable Energy, Sustainability and the Environment
Geography, Planning and Development
Management, Monitoring, Policy and Law
Abstract

The most widespread method for weed control and suckering in vineyards is under-row band herbicide application. It could be performed for weed control only (WC) or weed control and suckering (WSC) simultaneously. During herbicide application, spray drift is one of the most important environmental issues. The objective of this experimental work was to evaluate the performance of specific Spray Drift Reducing Techniques (SDRTs) used either for WC or WSC spray applications. Furthermore, spray drift reduction achieved by buffer zone adoption was investigated. All spray drift measurements were conducted according to ISO22866:2005 protocol. Sixteen configurations deriving from four nozzle types (two conventional and two air-induction—AI) combined with or without a semi-shielded boom at two different heights (0.25 m for WC and 0.50 m for WSC) were tested. A fully-shielded boom was also tested in combination with conventional nozzles at 0.25 m height for WC. Ground spray drift profiles were obtained, from which corresponding Drift Values (DVs) were calculated. Then, the related drift reduction was calculated based on ISO22369-1:2006. It was revealed that WC spray applications generate lower spray drift than WSC applications. In all cases, using AI nozzles and semi-shielded boom significantly reduced DVs; the optimum combination of SDRTs decreased spray drift by up to 78% and 95% for WC and WSC spray application, respectively. The fully-shielded boom allowed reducing nearly 100% of spray drift generation. Finally, the adoption of a cropped buffer zone that includes the two outermost vineyard rows lowered the total spray drift up to 97%. The first 90th percentile model for the spray drift generated during herbicide application in vineyards was also obtained.

Top-30

Journals

1
2
3
4
1
2
3
4

Publishers

2
4
6
8
10
2
4
6
8
10
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?