Open Access
Open access
Sustainability, volume 14, issue 15, pages 9597

Application of Sequential Combination of Electro-Coagulation/Electro-Oxidation and Adsorption for the Treatment of Hemodialysis Wastewater for Possible Reuse

Publication typeJournal Article
Publication date2022-08-04
Journal: Sustainability
scimago Q1
SJR0.672
CiteScore6.8
Impact factor3.3
ISSN20711050
Renewable Energy, Sustainability and the Environment
Building and Construction
Geography, Planning and Development
Management, Monitoring, Policy and Law
Abstract

Reusing hemodialysis wastewater (HWW) is more difficult due to its higher conductivity (salinity) and the need for an iterative RO or adsorption process. It can therefore be challenging and technologically laborious. In this context, this study aimed to investigate the possibility of treating HWW by combining electro-coagulation (EC) and electro-oxidation (EO) processes and adsorption as the best technologies to achieve efficient removal of dissolved micropollutants. In this work, the application of electro-coagulation/electro-oxidation processes using, respectively, aluminum and platinum electrodes combined with adsorption onto active carbon to treat HWW was studied. In the EC process, high removal of phosphate ions and chemical oxygen demand (COD) was observed. In the EO process, the COD removal performance, total nitrogen, and Mg were significant and reached 100, 83, and 89%, respectively, after 100 min of treatment. The estimated energies required to treat HWW by EC and/or EO were approximately 0.7 kWh/m3 and 0.05 kWh/m3, respectively. While the EO and EC processes used for COD removal from HWW showed almost similar performances, the EO process seems to consume less energy. Therefore, electrochemical removal of HWW can be successfully performed using the EO process and activated carbon (AC) for the complete removal of COD and the mineralization of pharmaceutical residues. The experimental results showed that the coupling of the three processes (EC–EO–AC) provides treated water that can be reused in agriculture due to its less sodium absorption ratio (SAR) value and might be an alternative method of wastewater treatment responding to the concept of green dialysis.

Top-30

Journals

1
1

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?