Open Access
Open access
Sustainability, volume 16, issue 22, pages 9867

Analyzing the Relationship Between User Feedback and Traffic Accidents Through Crowdsourced Data

Publication typeJournal Article
Publication date2024-11-12
Journal: Sustainability
scimago Q1
SJR0.672
CiteScore6.8
Impact factor3.3
ISSN20711050
Abstract

Identifying road segments with a high crash incidence is essential for improving road safety. Conventional methods for detecting these segments rely on historical data from various sensors, which may inadequately capture rapidly changing road conditions and emerging hazards. To address these limitations, this study proposes leveraging crowdsourced data alongside historical traffic accident records to identify areas prone to crashes. By integrating real-time public observations and user feedback, the research hypothesizes that traffic accidents are more likely to occur in areas with frequent user-reported feedback. To evaluate this hypothesis, spatial autocorrelation and clustering analyses are conducted on both crowdsourced data and accident records. After defining hotspot areas based on user feedback and fatal accident records, a density analysis is performed on such hotspots. The results indicate that integrating crowdsourced data can complement traditional methods, providing a more dynamic and adaptive framework for identifying and mitigating road-related risks. Furthermore, this study demonstrates that crowdsourced data can serve as a strategic and sustainable resource for enhancing road safety and informing more effective road management practices.

Found 
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?