Open Access
Open access
Symmetry, volume 12, issue 6, pages 999

Analytical Solutions to the Singular Problem for a System of Nonlinear Parabolic Equations of the Reaction-Diffusion Type

Publication typeJournal Article
Publication date2020-06-11
Journal: Symmetry
scimago Q2
wos Q2
SJR0.485
CiteScore5.4
Impact factor2.2
ISSN20738994
Chemistry (miscellaneous)
Physics and Astronomy (miscellaneous)
General Mathematics
Computer Science (miscellaneous)
Abstract

The paper deals with a system of two nonlinear second-order parabolic equations. Similar systems, also known as reaction-diffusion systems, describe different chemical processes. In particular, two unknown functions can represent concentrations of effectors (the activator and the inhibitor respectively), which participate in the reaction. Diffusion waves propagating over zero background with finite velocity form an essential class of solutions of these systems. The existence of such solutions is possible because the parabolic type of equations degenerates if unknown functions are equal to zero. We study the analytic solvability of a boundary value problem with the degeneration for the reaction-diffusion system. The diffusion wave front is known. We prove the theorem of existence of the analytic solution in the general case. We construct a solution in the form of power series and suggest recurrent formulas for coefficients. Since, generally speaking, the solution is not unique, we consider some cases not covered by the proved theorem and present the example similar to the classic example of S.V. Kovalevskaya.

Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
5
6
1
2
3
4
5
6
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?