Open Access
Open access
том 12 издание 19 страницы 9637

Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review

Abdulalem Ali 1
Shukor Abd Razak 1, 2
Siti Hajar Othman 1
Taiseer Abdalla Elfadil Eisa 3
Arafat Al Dhaqm 1
Maged Nasser 4
Tusneem Elhassan 1
Hashim Elshafie 5
Abdu Saif 6
Тип публикацииJournal Article
Дата публикации2022-09-26
scimago Q2
wos Q2
БС2
SJR0.521
CiteScore5.5
Impact factor2.5
ISSN20763417
Computer Science Applications
Process Chemistry and Technology
General Materials Science
Instrumentation
General Engineering
Fluid Flow and Transfer Processes
Краткое описание

Financial fraud, considered as deceptive tactics for gaining financial benefits, has recently become a widespread menace in companies and organizations. Conventional techniques such as manual verifications and inspections are imprecise, costly, and time consuming for identifying such fraudulent activities. With the advent of artificial intelligence, machine-learning-based approaches can be used intelligently to detect fraudulent transactions by analyzing a large number of financial data. Therefore, this paper attempts to present a systematic literature review (SLR) that systematically reviews and synthesizes the existing literature on machine learning (ML)-based fraud detection. Particularly, the review employed the Kitchenham approach, which uses well-defined protocols to extract and synthesize the relevant articles; it then report the obtained results. Based on the specified search strategies from popular electronic database libraries, several studies have been gathered. After inclusion/exclusion criteria, 93 articles were chosen, synthesized, and analyzed. The review summarizes popular ML techniques used for fraud detection, the most popular fraud type, and evaluation metrics. The reviewed articles showed that support vector machine (SVM) and artificial neural network (ANN) are popular ML algorithms used for fraud detection, and credit card fraud is the most popular fraud type addressed using ML techniques. The paper finally presents main issues, gaps, and limitations in financial fraud detection areas and suggests possible areas for future research.

Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
Lecture Notes in Networks and Systems
8 публикаций, 3.98%
IEEE Access
7 публикаций, 3.48%
Advances in Computational Intelligence and Robotics
4 публикации, 1.99%
AIP Conference Proceedings
4 публикации, 1.99%
Sustainability
3 публикации, 1.49%
Cogent Business and Management
3 публикации, 1.49%
Lecture Notes in Computer Science
3 публикации, 1.49%
Journal of Risk and Financial Management
2 публикации, 1%
Multimedia Tools and Applications
2 публикации, 1%
Handbook of Research on In-Country Determinants and Implications of Foreign Land Acquisitions
2 публикации, 1%
Humanities and Social Sciences Communications
2 публикации, 1%
Procedia Computer Science
2 публикации, 1%
Applied Sciences (Switzerland)
2 публикации, 1%
Electronics (Switzerland)
2 публикации, 1%
Frontiers in Artificial Intelligence
2 публикации, 1%
Computational Economics
2 публикации, 1%
Financial Innovation
1 публикация, 0.5%
Journal of Data Information and Management
1 публикация, 0.5%
Applied Soft Computing Journal
1 публикация, 0.5%
Signal, Image and Video Processing
1 публикация, 0.5%
Quantum Machine Intelligence
1 публикация, 0.5%
Journal of Theoretical and Applied Electronic Commerce Research
1 публикация, 0.5%
Intelligent Systems with Applications
1 публикация, 0.5%
Medical Advancements in Aging and Regenerative Technologies
1 публикация, 0.5%
Outsourcing Management for Supply Chain Operations and Logistics Service
1 публикация, 0.5%
Economics and Politics
1 публикация, 0.5%
International Journal of Law and Management
1 публикация, 0.5%
Molecules
1 публикация, 0.5%
Journal of the American Statistical Association
1 публикация, 0.5%
1
2
3
4
5
6
7
8

Издатели

10
20
30
40
50
60
70
80
90
Institute of Electrical and Electronics Engineers (IEEE)
87 публикаций, 43.28%
Springer Nature
38 публикаций, 18.91%
MDPI
22 публикации, 10.95%
IGI Global
14 публикаций, 6.97%
Elsevier
10 публикаций, 4.98%
Taylor & Francis
6 публикаций, 2.99%
AIP Publishing
4 публикации, 1.99%
Wiley
3 публикации, 1.49%
Emerald
3 публикации, 1.49%
Frontiers Media S.A.
3 публикации, 1.49%
Research Square Platform LLC
1 публикация, 0.5%
Optica Publishing Group
1 публикация, 0.5%
Publishing House Helvetica (Publications)
1 публикация, 0.5%
Society of Petroleum Engineers
1 публикация, 0.5%
Tsinghua University Press
1 публикация, 0.5%
Izmir Akademi Dernegi
1 публикация, 0.5%
SAGE
1 публикация, 0.5%
ITMO University
1 публикация, 0.5%
IOP Publishing
1 публикация, 0.5%
Naksh Solutions
1 публикация, 0.5%
Association for Computing Machinery (ACM)
1 публикация, 0.5%
10
20
30
40
50
60
70
80
90
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
201
Поделиться
Цитировать
ГОСТ |
Цитировать
Ali A. et al. Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review // Applied Sciences (Switzerland). 2022. Vol. 12. No. 19. p. 9637.
ГОСТ со всеми авторами (до 50) Скопировать
Ali A., Razak S. A., Hajar Othman S., Eisa T. A. E., Al Dhaqm A., Nasser M., Elhassan T., Elshafie H., Saif A. Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review // Applied Sciences (Switzerland). 2022. Vol. 12. No. 19. p. 9637.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/app12199637
UR - https://doi.org/10.3390/app12199637
TI - Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review
T2 - Applied Sciences (Switzerland)
AU - Ali, Abdulalem
AU - Razak, Shukor Abd
AU - Hajar Othman, Siti
AU - Eisa, Taiseer Abdalla Elfadil
AU - Al Dhaqm, Arafat
AU - Nasser, Maged
AU - Elhassan, Tusneem
AU - Elshafie, Hashim
AU - Saif, Abdu
PY - 2022
DA - 2022/09/26
PB - MDPI
SP - 9637
IS - 19
VL - 12
SN - 2076-3417
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Ali,
author = {Abdulalem Ali and Shukor Abd Razak and Siti Hajar Othman and Taiseer Abdalla Elfadil Eisa and Arafat Al Dhaqm and Maged Nasser and Tusneem Elhassan and Hashim Elshafie and Abdu Saif},
title = {Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review},
journal = {Applied Sciences (Switzerland)},
year = {2022},
volume = {12},
publisher = {MDPI},
month = {sep},
url = {https://doi.org/10.3390/app12199637},
number = {19},
pages = {9637},
doi = {10.3390/app12199637}
}
MLA
Цитировать
Ali, Abdulalem, et al. “Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review.” Applied Sciences (Switzerland), vol. 12, no. 19, Sep. 2022, p. 9637. https://doi.org/10.3390/app12199637.