Open Access
Open access
том 13 издание 19 страницы 11112

Applying Machine Learning in Retail Demand Prediction—A Comparison of Tree-Based Ensembles and Long Short-Term Memory-Based Deep Learning

Mehran Nasseri 1, 2
Taha Falatouri 1, 2
Patrick Brandtner 1, 2
Farzaneh Darbanian 1, 2
Тип публикацииJournal Article
Дата публикации2023-10-09
scimago Q2
wos Q2
БС2
SJR0.521
CiteScore5.5
Impact factor2.5
ISSN20763417
Computer Science Applications
Process Chemistry and Technology
General Materials Science
Instrumentation
General Engineering
Fluid Flow and Transfer Processes
Краткое описание

In the realm of retail supply chain management, accurate forecasting is paramount for informed decision making, as it directly impacts business operations and profitability. This study delves into the application of tree-based ensemble forecasting, specifically using extra tree Regressors (ETRs) and long short-term memory (LSTM) networks. Utilizing over six years of historical demand data from a prominent retail entity, the dataset encompasses daily demand metrics for more than 330 products, totaling 5.2 million records. Additionally, external variables, such as meteorological and COVID-19-related data, are integrated into the analysis. Our evaluation, spanning three perishable product categories, reveals that the ETR model outperforms LSTM in metrics including MAPE, MAE, RMSE, and R2. This disparity in performance is particularly pronounced for fresh meat products, whereas it is marginal for fruit products. These ETR results were evaluated alongside three other tree-based ensemble methods, namely XGBoost, Random Forest Regression (RFR), and Gradient Boosting Regression (GBR). The comparable performance across these four tree-based ensemble techniques serves to reinforce their comparative analysis with LSTM-based deep learning models. Our findings pave the way for future studies to assess the comparative efficacy of tree-based ensembles and deep learning techniques across varying forecasting horizons, such as short-, medium-, and long-term predictions.

Найдено 
Найдено 

Топ-30

Журналы

1
2
Mathematics
2 публикации, 11.11%
Journal of Retailing and Consumer Services
2 публикации, 11.11%
Environmental Research
1 публикация, 5.56%
Software
1 публикация, 5.56%
Bioresource Technology
1 публикация, 5.56%
International Journal of Logistics Management
1 публикация, 5.56%
Procedia Computer Science
1 публикация, 5.56%
Cleaner Logistics and Supply Chain
1 публикация, 5.56%
Frontiers in Physics
1 публикация, 5.56%
Supply Chain Analytics
1 публикация, 5.56%
1
2

Издатели

1
2
3
4
5
6
7
Elsevier
7 публикаций, 38.89%
Institute of Electrical and Electronics Engineers (IEEE)
6 публикаций, 33.33%
MDPI
3 публикации, 16.67%
Emerald
1 публикация, 5.56%
Frontiers Media S.A.
1 публикация, 5.56%
1
2
3
4
5
6
7
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
18
Поделиться
Цитировать
ГОСТ |
Цитировать
Nasseri M. et al. Applying Machine Learning in Retail Demand Prediction—A Comparison of Tree-Based Ensembles and Long Short-Term Memory-Based Deep Learning // Applied Sciences (Switzerland). 2023. Vol. 13. No. 19. p. 11112.
ГОСТ со всеми авторами (до 50) Скопировать
Nasseri M., Falatouri T., Brandtner P., Darbanian F. Applying Machine Learning in Retail Demand Prediction—A Comparison of Tree-Based Ensembles and Long Short-Term Memory-Based Deep Learning // Applied Sciences (Switzerland). 2023. Vol. 13. No. 19. p. 11112.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/app131911112
UR - https://doi.org/10.3390/app131911112
TI - Applying Machine Learning in Retail Demand Prediction—A Comparison of Tree-Based Ensembles and Long Short-Term Memory-Based Deep Learning
T2 - Applied Sciences (Switzerland)
AU - Nasseri, Mehran
AU - Falatouri, Taha
AU - Brandtner, Patrick
AU - Darbanian, Farzaneh
PY - 2023
DA - 2023/10/09
PB - MDPI
SP - 11112
IS - 19
VL - 13
SN - 2076-3417
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Nasseri,
author = {Mehran Nasseri and Taha Falatouri and Patrick Brandtner and Farzaneh Darbanian},
title = {Applying Machine Learning in Retail Demand Prediction—A Comparison of Tree-Based Ensembles and Long Short-Term Memory-Based Deep Learning},
journal = {Applied Sciences (Switzerland)},
year = {2023},
volume = {13},
publisher = {MDPI},
month = {oct},
url = {https://doi.org/10.3390/app131911112},
number = {19},
pages = {11112},
doi = {10.3390/app131911112}
}
MLA
Цитировать
Nasseri, Mehran, et al. “Applying Machine Learning in Retail Demand Prediction—A Comparison of Tree-Based Ensembles and Long Short-Term Memory-Based Deep Learning.” Applied Sciences (Switzerland), vol. 13, no. 19, Oct. 2023, p. 11112. https://doi.org/10.3390/app131911112.