Open Access
Open access
том 9 издание 16 страницы 3312

Deep Learning-Based Classification of Weld Surface Defects

Тип публикацииJournal Article
Дата публикации2019-08-12
scimago Q2
wos Q2
БС2
SJR0.521
CiteScore5.5
Impact factor2.5
ISSN20763417
Computer Science Applications
Process Chemistry and Technology
General Materials Science
Instrumentation
General Engineering
Fluid Flow and Transfer Processes
Краткое описание

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.

Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
Sensors
5 публикаций, 7.35%
Journal of Manufacturing Processes
5 публикаций, 7.35%
IEEE Access
4 публикации, 5.88%
International Journal of Advanced Manufacturing Technology
3 публикации, 4.41%
Metals
2 публикации, 2.94%
Journal of Manufacturing Systems
2 публикации, 2.94%
Journal of Intelligent Manufacturing
2 публикации, 2.94%
Measurement and Control
1 публикация, 1.47%
Applied Sciences (Switzerland)
1 публикация, 1.47%
Nanomaterials
1 публикация, 1.47%
Catalysts
1 публикация, 1.47%
Ultrasonics
1 публикация, 1.47%
Process Safety and Environmental Protection
1 публикация, 1.47%
IOP Conference Series: Materials Science and Engineering
1 публикация, 1.47%
IEEE Transactions on Industrial Informatics
1 публикация, 1.47%
Security and Communication Networks
1 публикация, 1.47%
International Journal of Engineering Research in Africa
1 публикация, 1.47%
Frontiers in Physics
1 публикация, 1.47%
Artificial Intelligence in Data and Big Data Processing
1 публикация, 1.47%
Lecture Notes in Networks and Systems
1 публикация, 1.47%
Advances in Intelligent Systems and Computing
1 публикация, 1.47%
Engineering Research Express
1 публикация, 1.47%
Herald of the Bauman Moscow State Technical University Series Instrument Engineering
1 публикация, 1.47%
Kinetics and Catalysis
1 публикация, 1.47%
Journal of Nondestructive Evaluation
1 публикация, 1.47%
AIP Conference Proceedings
1 публикация, 1.47%
Processes
1 публикация, 1.47%
Measurement: Journal of the International Measurement Confederation
1 публикация, 1.47%
Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering
1 публикация, 1.47%
1
2
3
4
5

Издатели

2
4
6
8
10
12
14
16
18
Institute of Electrical and Electronics Engineers (IEEE)
18 публикаций, 26.47%
MDPI
11 публикаций, 16.18%
Elsevier
11 публикаций, 16.18%
Springer Nature
10 публикаций, 14.71%
Taylor & Francis
3 публикации, 4.41%
IOP Publishing
2 публикации, 2.94%
Pleiades Publishing
2 публикации, 2.94%
SAGE
1 публикация, 1.47%
Hindawi Limited
1 публикация, 1.47%
Trans Tech Publications
1 публикация, 1.47%
Frontiers Media S.A.
1 публикация, 1.47%
Bauman Moscow State Technical University
1 публикация, 1.47%
AIP Publishing
1 публикация, 1.47%
IGI Global
1 публикация, 1.47%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 1.47%
Wiley
1 публикация, 1.47%
2
4
6
8
10
12
14
16
18
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
68
Поделиться
Цитировать
ГОСТ |
Цитировать
Zhu et al. Deep Learning-Based Classification of Weld Surface Defects // Applied Sciences (Switzerland). 2019. Vol. 9. No. 16. p. 3312.
ГОСТ со всеми авторами (до 50) Скопировать
Zhu, Ge, Liu  . Deep Learning-Based Classification of Weld Surface Defects // Applied Sciences (Switzerland). 2019. Vol. 9. No. 16. p. 3312.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/app9163312
UR - https://doi.org/10.3390/app9163312
TI - Deep Learning-Based Classification of Weld Surface Defects
T2 - Applied Sciences (Switzerland)
AU - Zhu
AU - Ge
AU - Liu,  .
PY - 2019
DA - 2019/08/12
PB - MDPI
SP - 3312
IS - 16
VL - 9
SN - 2076-3417
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Zhu,
author = {Zhu and Ge and  . Liu},
title = {Deep Learning-Based Classification of Weld Surface Defects},
journal = {Applied Sciences (Switzerland)},
year = {2019},
volume = {9},
publisher = {MDPI},
month = {aug},
url = {https://doi.org/10.3390/app9163312},
number = {16},
pages = {3312},
doi = {10.3390/app9163312}
}
MLA
Цитировать
Zhu, et al. “Deep Learning-Based Classification of Weld Surface Defects.” Applied Sciences (Switzerland), vol. 9, no. 16, Aug. 2019, p. 3312. https://doi.org/10.3390/app9163312.