Facile Redox Synthesis of Novel Bimetallic Crn+/Pd0 Nanoparticles Supported on SiO2 and TiO2 for Catalytic Selective Hydrogenation with Molecular Hydrogen
The bimetallic Crn+/Pd0 nanoparticles have been synthesized for the first time by a two-step redox method. The method includes the deposition of Pd0 nanoparticles on the surface of SiO2 and TiO2 carriers followed by the deposition of Crn+ on the surface of Pd0 nanoparticles using the redox procedures, which are based on the catalytic reduction of Crn+ with H2 in aqueous suspensions at ambient conditions. Transmission (TEM) and scanning (SEM) electron microscopy, X-ray photoelectron spectroscopy (XPS), Fourie-transformed infrared spectroscopy of adsorbed CO (FTIR-CO), and CO chemisorption studies were performed to characterize the morphology, nanoparticle size, element, and particle distribution, as well as the electronic state of deposited metals in the obtained catalysts. A decrease in nanoparticle size from 22 nm (Pd/SiO2) to 2–6 nm (Pd/TiO2) makes possible deposition of up to 1.1 wt.% Cr most likely as Cr3+. The deposition of CrOx species on the surface of Pd nanoparticles was confirmed using FTIR of adsorbed CO and the method of temperature-programmed reduction with hydrogen (TPR-H2). The intensive hydrogen consumption in the temperature ranges from −50 °C to 40 °C (Cr/Pd/SiO2) and from −90 °C to −40 °C (Cr/Pd/TiO2) was first observed for the supported Pd catalysts. The decrease in the temperature of β-PdHx decomposition indicates the strong interaction between the deposited Crn+ species and Pd0 nanoparticle after reduction with H2 at 500 °C. The novel Crn+/Pd/TiO2 catalysts demonstrated a considerably higher activity in selective hydrogenation of phenylacetylene than the Pd/TiO2 catalyst at ambient conditions.
Топ-30
Журналы
|
1
|
|
|
Applied Catalysis B: Environmental
1 публикация, 25%
|
|
|
Industrial & Engineering Chemistry Research
1 публикация, 25%
|
|
|
Catalysts
1 публикация, 25%
|
|
|
Mendeleev Communications
1 публикация, 25%
|
|
|
1
|
Издатели
|
1
2
|
|
|
Elsevier
2 публикации, 50%
|
|
|
American Chemical Society (ACS)
1 публикация, 25%
|
|
|
MDPI
1 публикация, 25%
|
|
|
1
2
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.