Open Access
Open access
volume 10 issue 12 pages 520

SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods

Ekaterina A Slipchenko 1
Irina A Boginskaya 1
Robert R Safiullin 2
Ilya A. Ryzhikov 1, 3
Marina V. Sedova 1
Konstantin N Afanasev 1
Natalia L Nechaeva 4
Ilya N Kurochkin 4
Alexander M. Merzlikin 1
Andrey N. Lagarkov 1
Publication typeJournal Article
Publication date2022-12-07
scimago Q2
wos Q2
SJR0.618
CiteScore7.3
Impact factor3.7
ISSN22279040
Physical and Theoretical Chemistry
Analytical Chemistry
Abstract

In this study, a non-labeled sensor system for direct determining human glycated albumin levels for medical application is proposed. Using machine learning methods applied to surface-enhanced Raman scattering (SERS) spectra of human glycated albumin and serum human albumin enabled the avoidance of complex sample preparation. By implementing linear discriminant analysis and regularized linear regression, classification and regression problems were solved based on the spectra obtained as a result of the experiment. The results show that, coupled with data augmentation and a special cross-validation procedure, the methods we employed yield better results in the corresponding tasks in comparison with popular random forest methods and the support vector method. The results show that SERS, in combination with machine learning methods, can be a powerful and effective tool for the simple and direct assay of protein mixtures.

Found 
Found 

Top-30

Publishers

1
2
3
4
5
6
Elsevier
6 publications, 54.55%
MDPI
2 publications, 18.18%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 9.09%
Springer Nature
1 publication, 9.09%
Wiley
1 publication, 9.09%
1
2
3
4
5
6
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
11
Share
Cite this
GOST |
Cite this
GOST Copy
Slipchenko E. A. et al. SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods // Chemosensors. 2022. Vol. 10. No. 12. p. 520.
GOST all authors (up to 50) Copy
Slipchenko E. A., Boginskaya I. A., Safiullin R. R., Ryzhikov I. A., Sedova M. V., Afanasev K. N., Nechaeva N. L., Kurochkin I. N., Merzlikin A. M., Lagarkov A. N. SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods // Chemosensors. 2022. Vol. 10. No. 12. p. 520.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.3390/chemosensors10120520
UR - https://doi.org/10.3390/chemosensors10120520
TI - SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods
T2 - Chemosensors
AU - Slipchenko, Ekaterina A
AU - Boginskaya, Irina A
AU - Safiullin, Robert R
AU - Ryzhikov, Ilya A.
AU - Sedova, Marina V.
AU - Afanasev, Konstantin N
AU - Nechaeva, Natalia L
AU - Kurochkin, Ilya N
AU - Merzlikin, Alexander M.
AU - Lagarkov, Andrey N.
PY - 2022
DA - 2022/12/07
PB - MDPI
SP - 520
IS - 12
VL - 10
SN - 2227-9040
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Slipchenko,
author = {Ekaterina A Slipchenko and Irina A Boginskaya and Robert R Safiullin and Ilya A. Ryzhikov and Marina V. Sedova and Konstantin N Afanasev and Natalia L Nechaeva and Ilya N Kurochkin and Alexander M. Merzlikin and Andrey N. Lagarkov},
title = {SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods},
journal = {Chemosensors},
year = {2022},
volume = {10},
publisher = {MDPI},
month = {dec},
url = {https://doi.org/10.3390/chemosensors10120520},
number = {12},
pages = {520},
doi = {10.3390/chemosensors10120520}
}
MLA
Cite this
MLA Copy
Slipchenko, Ekaterina A., et al. “SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods.” Chemosensors, vol. 10, no. 12, Dec. 2022, p. 520. https://doi.org/10.3390/chemosensors10120520.