Open Access
Open access
Drugs and Drug Candidates, volume 4, issue 1, pages 7

Therapeutic Potential of ACMSD Inhibitors in NAD+ Deficient Diseases

Publication typeJournal Article
Publication date2025-02-17
SJR
CiteScore
Impact factor
ISSN28132998
Abstract

Nicotinamide adenine dinucleotide (NAD+) is one of the most essential coenzymes that is widely distributed in human tissues. However, with the progress of aging, the NAD+ level gradually decreases, thus impacting the metabolic dynamics and heightening susceptibility to various pathologies. Increasing NAD+ levels are expected to delay aging and improve age-related degenerative diseases. Amino–carboxylic semialdehyde dehydrogenase (ACMSD) is a key enzyme involved in the de novo synthesis of NAD+. It reduces the intermediate products of the de novo synthesis pathway by catalyzing the degradation of α-amino-β-carboxyethylglutamic acid-ε-semialdehyde (ACMS), thus reducing the production of NAD+. Genetic and pharmacological inhibition of ACMSD has been demonstrated to increase NAD+ levels in vitro and in vivo, thus making it a potential target for the treatment of NAD+-deficient diseases. In this mini-review, we detail the molecular mechanisms regulated by ACMSD. We also discuss the potential efficacy and progress of ACMSD inhibitors in treating aging and age-related diseases.

Found 
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?