Open Access
Open access

Towards generative design of computationally efficient mathematical models with evolutionary learning

Kalyuzhnaya A.V., Nikitin N.O., Hvatov A., Maslyaev M., Yachmenkov M., Boukhanovsky A.
Тип документаJournal Article
Дата публикации2021-01-01
Название журналаEntropy
ИздательMultidisciplinary Digital Publishing Institute (MDPI)
Квартиль по SCImagoQ2
Квартиль по Web of ScienceQ2
Импакт-фактор 20212.74
General Physics and Astronomy
Краткое описание
In this paper, we describe the concept of generative design approach applied to the automated evolutionary learning of mathematical models in a computationally efficient way. To formalize the problems of models’ design and co-design, the generalized formulation of the modeling workflow is proposed. A parallelized evolutionary learning approach for the identification of model structure is described for the equation-based model and composite machine learning models. Moreover, the involvement of the performance models in the design process is analyzed. A set of experiments with various models and computational resources is conducted to verify different aspects of the proposed approach.
Пристатейные ссылки: 49
Цитируется в публикациях: 7
How and why to build a mathematical model: A case study using prion aggregation
Banwarth-Kuhn M., Sindi S.
Q1 Journal of Biological Chemistry 2020 цитирований: 9
Open Access
Open access
Structural Evolutionary Learning for Composite Classification Models
Nikitin N.O., Polonskaia I.S., Vychuzhanin P., Barabanova I.V., Kalyuzhnaya A.V.
Q2 Procedia Computer Science 2020 цитирований: 9
Open Access
Open access
Co-design of deep neural nets and neural net accelerators for embedded vision applications
Amid A., Kwon K., Gholami A., Wu B., Asanovic K., Keutzer K.
Q2 IBM Journal of Research and Development 2019 цитирований: 2
Empirical model-based performance prediction for application mapping on multicore architectures
Gamatié A., An X., Zhang Y., Kang A., Sassatelli G.
Q1 Journal of Systems Architecture 2019 цитирований: 5
Workflow scheduling using Neural Networks and Reinforcement Learning
Melnik M., Nasonov D.
Q2 Procedia Computer Science 2019 цитирований: 5
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
Raissi M., Perdikaris P., Karniadakis G.E.
Q1 Journal of Computational Physics 2019 цитирований: 1471
The Digital Shadow of production – A concept for the effective and efficient information supply in dynamic industrial environments
Bauernhansl T., Hartleif S., Felix T.
Q2 Procedia CIRP 2018 цитирований: 32
Hybrid scheduling algorithm in early warning systems
Visheratin A.A., Melnik M., Nasonov D., Butakov N., Boukhanovsky A.V.
Q1 Future Generation Computer Systems 2018 цитирований: 7
A conceptual approach to complex model management with generalized modelling patterns and evolutionary identification
Kovalchuk S.V., Metsker O.G., Funkner A.A., Kisliakovskii I.O., Nikitin N.O., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O.
Q1 Complexity 2018 цитирований: 9
Open Access
Open access
Efficient benchmarking of algorithm configurators via model-based surrogates
Eggensperger K., Lindauer M., Hoos H.H., Hutter F., Leyton-Brown K.
Q1 Machine Learning 2017 цитирований: 19
PMLB: a large benchmark suite for machine learning evaluation and comparison
Olson R.S., La Cava W., Orzechowski P., Urbanowicz R.J., Moore J.H.
Q1 BioData Mining 2017 цитирований: 104
Open Access
Open access
Execution Time Estimation for Workflow Scheduling
Chirkin A.M., Belloum A.S., Kovalchuk S.V., Makkes M.X., Melnik M.A., Visheratin A.A., Nasonov D.A.
Q1 Future Generation Computer Systems 2017 цитирований: 45
Hybridisation strategies and data structures for the NEMO ocean model
Epicoco I., Mocavero S., Porter A.R., Pickles S.M., Ashworth M., Aloisio G.
Q2 International Journal of High Performance Computing Applications 2017 цитирований: 2
Data-driven non-Markovian closure models
Kondrashov D., Chekroun M.D., Ghil M.
Q1 Physica D: Nonlinear Phenomena 2015 цитирований: 69
Exascale design space exploration and co-design
Dosanjh S.S., Barrett R.F., Doerfler D.W., Hammond S.D., Hemmert K.S., Heroux M.A., Lin P.T., Pedretti K.T., Rodrigues A.F., Trucano T.G., Luitjens J.P.
Q1 Future Generation Computer Systems 2014 цитирований: 30
1. Kalyuzhnaya A. V. и др. Towards Generative Design of Computationally Efficient Mathematical Models with Evolutionary Learning // Entropy. 2020. Т. 23. № 1. С. 28.


DO - 10.3390/e23010028

UR -

TI - Towards Generative Design of Computationally Efficient Mathematical Models with Evolutionary Learning

T2 - Entropy

AU - Kalyuzhnaya, Anna V.

AU - Nikitin, Nikolay O.

AU - Hvatov, Alexander

AU - Maslyaev, Mikhail

AU - Yachmenkov, Mikhail

AU - Boukhanovsky, Alexander

PY - 2020

DA - 2020/12/27


SP - 28

IS - 1

VL - 23

SN - 1099-4300

ER -

BibTex |


doi = {10.3390/e23010028},

url = {},

year = 2020,

month = {dec},

publisher = {{MDPI} {AG}},

volume = {23},

number = {1},

pages = {28},

author = {Anna V. Kalyuzhnaya and Nikolay O. Nikitin and Alexander Hvatov and Mikhail Maslyaev and Mikhail Yachmenkov and Alexander Boukhanovsky},

title = {Towards Generative Design of Computationally Efficient Mathematical Models with Evolutionary Learning},

journal = {Entropy}


Kalyuzhnaya, Anna V., et al. “Towards Generative Design of Computationally Efficient Mathematical Models with Evolutionary Learning.” Entropy, vol. 23, no. 1, Dec. 2020, p. 28. Crossref,