Open Access
Open access
Entropy, том 23, издание 1, номера страниц: 1-26

Towards generative design of computationally efficient mathematical models with evolutionary learning

Тип документаJournal Article
Дата публикации2020-12-27
Multidisciplinary Digital Publishing Institute (MDPI)
Multidisciplinary Digital Publishing Institute (MDPI)
Название журналаEntropy
Квартиль по SCImago2
Квартиль по Web of Science
Импакт-фактор 20212.74
ISSN10994300
General Physics and Astronomy
Краткое описание
In this paper, we describe the concept of generative design approach applied to the automated evolutionary learning of mathematical models in a computationally efficient way. To formalize the problems of models’ design and co-design, the generalized formulation of the modeling workflow is proposed. A parallelized evolutionary learning approach for the identification of model structure is described for the equation-based model and composite machine learning models. Moreover, the involvement of the performance models in the design process is analyzed. A set of experiments with various models and computational resources is conducted to verify different aspects of the proposed approach.
Цитируется в публикациях: 7
Метрики

Поделиться

Цитировать
ГОСТ |
Цитировать
1. Kalyuzhnaya A. V. и др. Towards Generative Design of Computationally Efficient Mathematical Models with Evolutionary Learning // Entropy. 2020. Т. 23. № 1. С. 28.
RIS |
Цитировать

TY - JOUR

DO - 10.3390/e23010028

UR - http://dx.doi.org/10.3390/e23010028

TI - Towards Generative Design of Computationally Efficient Mathematical Models with Evolutionary Learning

T2 - Entropy

AU - Kalyuzhnaya, Anna V.

AU - Nikitin, Nikolay O.

AU - Hvatov, Alexander

AU - Maslyaev, Mikhail

AU - Yachmenkov, Mikhail

AU - Boukhanovsky, Alexander

PY - 2020

DA - 2020/12/27

PB - MDPI AG

SP - 28

IS - 1

VL - 23

SN - 1099-4300

ER -

BibTex |
Цитировать

@article{Kalyuzhnaya_2020,

doi = {10.3390/e23010028},

url = {https://doi.org/10.3390%2Fe23010028},

year = 2020,

month = {dec},

publisher = {{MDPI} {AG}},

volume = {23},

number = {1},

pages = {28},

author = {Anna V. Kalyuzhnaya and Nikolay O. Nikitin and Alexander Hvatov and Mikhail Maslyaev and Mikhail Yachmenkov and Alexander Boukhanovsky},

title = {Towards Generative Design of Computationally Efficient Mathematical Models with Evolutionary Learning},

journal = {Entropy}

}

MLA
Цитировать
Kalyuzhnaya, Anna V., et al. “Towards Generative Design of Computationally Efficient Mathematical Models with Evolutionary Learning.” Entropy, vol. 23, no. 1, Dec. 2020, p. 28. Crossref, https://doi.org/10.3390/e23010028.