Open Access
Open access
Nanomaterials, volume 11, issue 4, pages 960

XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires

Fedorov Vladimir V 1, 2
Udovenko Stanislav A 2
Dvoretckaia Liliia N 1
Burkovsky Roman G 2
Publication typeJournal Article
Publication date2021-04-09
Journal: Nanomaterials
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor5.3
ISSN20794991
PubMed ID:  33918690
General Chemical Engineering
General Materials Science
Abstract

Control and analysis of the crystal phase in semiconductor nanowires are of high importance due to the new possibilities for strain and band gap engineering for advanced nanoelectronic and nanophotonic devices. In this letter, we report the growth of the self-catalyzed GaP nanowires with a high concentration of wurtzite phase by molecular beam epitaxy on Si (111) and investigate their crystallinity. Varying the growth temperature and V/III flux ratio, we obtained wurtzite polytype segments with thicknesses in the range from several tens to 500 nm, which demonstrates the high potential of the phase bandgap engineering with highly crystalline self-catalyzed phosphide nanowires. The formation of rotational twins and wurtzite polymorph in vertical nanowires was observed through complex approach based on transmission electron microscopy, powder X-ray diffraction, and reciprocal space mapping. The phase composition, volume fraction of the crystalline phases, and wurtzite GaP lattice parameters were analyzed for the nanowires detached from the substrate. It is shown that the wurtzite phase formation occurs only in the vertically-oriented nanowires during vapor-liquid-solid growth, while the wurtzite phase is absent in GaP islands parasitically grown via the vapor-solid mechanism. The proposed approach can be used for the quantitative evaluation of the mean volume fraction of polytypic phase segments in heterostructured nanowires that are highly desirable for the optimization of growth technologies.

Citations by journals

1
2
Nanomaterials
Nanomaterials, 2, 40%
Nanomaterials
2 publications, 40%
ACS Applied Energy Materials
ACS Applied Energy Materials, 1, 20%
ACS Applied Energy Materials
1 publication, 20%
Nanotechnology
Nanotechnology, 1, 20%
Nanotechnology
1 publication, 20%
Nanoscale
Nanoscale, 1, 20%
Nanoscale
1 publication, 20%
1
2

Citations by publishers

1
2
Multidisciplinary Digital Publishing Institute (MDPI)
Multidisciplinary Digital Publishing Institute (MDPI), 2, 40%
Multidisciplinary Digital Publishing Institute (MDPI)
2 publications, 40%
American Chemical Society (ACS)
American Chemical Society (ACS), 1, 20%
American Chemical Society (ACS)
1 publication, 20%
IOP Publishing
IOP Publishing, 1, 20%
IOP Publishing
1 publication, 20%
Royal Society of Chemistry (RSC)
Royal Society of Chemistry (RSC), 1, 20%
Royal Society of Chemistry (RSC)
1 publication, 20%
1
2
  • We do not take into account publications that without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Koval O. Yu. et al. XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires // Nanomaterials. 2021. Vol. 11. No. 4. p. 960.
GOST all authors (up to 50) Copy
Koval O. Yu., Fedorov V. V., Bolshakov A. P., Eliseev I. E., Fedina S. V., Sapunov G. A., Udovenko S. A., Dvoretckaia L. N., Kirilenko D., Burkovsky R. G., Mukhin I. S. XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires // Nanomaterials. 2021. Vol. 11. No. 4. p. 960.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.3390/nano11040960
UR - https://doi.org/10.3390%2Fnano11040960
TI - XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires
T2 - Nanomaterials
AU - Fedorov, Vladimir V
AU - Udovenko, Stanislav A
AU - Dvoretckaia, Liliia N
AU - Burkovsky, Roman G
AU - Sapunov, Georgiy A
AU - Koval, Olga Yu
AU - Bolshakov, Alexey P.
AU - Eliseev, Igor E.
AU - Fedina, Sergey V
AU - Kirilenko, D.A.
AU - Mukhin, Ivan S.
PY - 2021
DA - 2021/04/09 00:00:00
PB - Multidisciplinary Digital Publishing Institute (MDPI)
SP - 960
IS - 4
VL - 11
PMID - 33918690
SN - 2079-4991
ER -
BibTex |
Cite this
BibTex Copy
@article{2021_Koval
author = {Vladimir V Fedorov and Stanislav A Udovenko and Liliia N Dvoretckaia and Roman G Burkovsky and Georgiy A Sapunov and Olga Yu Koval and Alexey P. Bolshakov and Igor E. Eliseev and Sergey V Fedina and D.A. Kirilenko and Ivan S. Mukhin},
title = {XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires},
journal = {Nanomaterials},
year = {2021},
volume = {11},
publisher = {Multidisciplinary Digital Publishing Institute (MDPI)},
month = {apr},
url = {https://doi.org/10.3390%2Fnano11040960},
number = {4},
pages = {960},
doi = {10.3390/nano11040960}
}
MLA
Cite this
MLA Copy
Koval, Olga Yu., et al. “XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires.” Nanomaterials, vol. 11, no. 4, Apr. 2021, p. 960. https://doi.org/10.3390%2Fnano11040960.
Found error?