Open Access
Open access
Network, volume 2, issue 1, pages 66-80

Delegated Proof of Secret Sharing: A Privacy-Preserving Consensus Protocol Based on Secure Multiparty Computation for IoT Environment

Publication typeJournal Article
Publication date2022-01-25
Journal: Network
SJR
CiteScore
Impact factor
ISSN26738732
Pharmaceutical Science
Complementary and alternative medicine
Pharmacology (medical)
Abstract

With the rapid advancement and wide application of blockchain technology, blockchain consensus protocols, which are the core part of blockchain systems, along with the privacy issues, have drawn much attention from researchers. A key aspect of privacy in the blockchain is the sensitive content of transactions in the permissionless blockchain. Meanwhile, some blockchain applications, such as cryptocurrencies, are based on low-efficiency and high-cost consensus protocols, which may not be practical and feasible for other blockchain applications. In this paper, we propose an efficient and privacy-preserving consensus protocol, called Delegated Proof of Secret Sharing (DPoSS), which is inspired by secure multiparty computation. Specifically, DPoSS first uses polynomial interpolation to select a dealer group from many nodes to maintain the consensus of the blockchain system, in which the dealers in the dealer group take turns to pack the new block. In addition, since the content of transactions is sensitive, our proposed design utilizes verifiable secret sharing to protect the privacy of transmission and defend against the malicious attacks. Extensive experiments show that the proposed consensus protocol achieves fairness during the process of reaching consensus.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?