Open Access
Open access
Network, volume 2, issue 1, pages 106-122

A Dynamic Service Placement Based on Deep Reinforcement Learning in Mobile Edge Computing

Publication typeJournal Article
Publication date2022-02-24
Journal: Network
SJR
CiteScore
Impact factor
ISSN26738732
Pharmaceutical Science
Complementary and alternative medicine
Pharmacology (medical)
Abstract

Mobile edge computing is an emerging paradigm that supplies computation, storage, and networking resources between end devices and traditional cloud data centers. With increased investment of resources, users demand a higher quality-of-service (QoS). However, it is nontrivial to maintain service performance under the erratic activities of end-users. In this paper, we focus on the service placement problem under the continuous provisioning scenario in mobile edge computing for multiple mobile users. We propose a novel dynamic placement framework based on deep reinforcement learning (DSP-DRL) to optimize the total delay without overwhelming the constraints on physical resources and operational costs. In the learning framework, we propose a new migration conflicting resolution mechanism to avoid the invalid state in the decision module. We first formulate the service placement under the migration confliction into a mixed-integer linear programming (MILP) problem. Then, we propose a new migration conflict resolution mechanism to avoid the invalid state and approximate the policy in the decision modular according to the introduced migration feasibility factor. Extensive evaluations demonstrate that the proposed dynamic service placement framework outperforms baselines in terms of efficiency and overall latency.

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
5
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?