Open Access
Open access
том 12 издание 23 страницы 1-21

A machine learning approach for remote sensing data gap-filling with open-source implementation: An example regarding land surface temperature, surface albedo and ndvi

Тип публикацииJournal Article
Дата публикации2020-11-25
scimago Q1
wos Q1
БС1
SJR1.019
CiteScore8.6
Impact factor4.1
ISSN20724292, 23154632, 23154675
General Earth and Planetary Sciences
Краткое описание

Satellite remote sensing has now become a unique tool for continuous and predictable monitoring of geosystems at various scales, observing the dynamics of different geophysical parameters of the environment. One of the essential problems with most satellite environmental monitoring methods is their sensitivity to atmospheric conditions, in particular cloud cover, which leads to the loss of a significant part of data, especially at high latitudes, potentially reducing the quality of observation time series until it is useless. In this paper, we present a toolbox for filling gaps in remote sensing time-series data based on machine learning algorithms and spatio-temporal statistics. The first implemented procedure allows us to fill gaps based on spatial relationships between pixels, obtained from historical time-series. Then, the second procedure is dedicated to filling the remaining gaps based on the temporal dynamics of each pixel value. The algorithm was tested and verified on Sentinel-3 SLSTR and Terra MODIS land surface temperature data and under different geographical and seasonal conditions. As a result of validation, it was found that in most cases the error did not exceed 1 °C. The algorithm was also verified for gaps restoration in Terra MODIS derived normalized difference vegetation index and land surface broadband albedo datasets. The software implementation is Python-based and distributed under conditions of GNU GPL 3 license via public repository.

Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
Remote Sensing
12 публикаций, 18.75%
IEEE Transactions on Geoscience and Remote Sensing
4 публикации, 6.25%
Sensors
3 публикации, 4.69%
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
3 публикации, 4.69%
Hydrology and Earth System Sciences
2 публикации, 3.13%
International Journal of Applied Earth Observation and Geoinformation
2 публикации, 3.13%
Urban Climate
2 публикации, 3.13%
Remote Sensing Applications: Society and Environment
2 публикации, 3.13%
ISPRS International Journal of Geo-Information
1 публикация, 1.56%
Journal of Hydroinformatics
1 публикация, 1.56%
Atmosphere
1 публикация, 1.56%
Computers and Electronics in Agriculture
1 публикация, 1.56%
Science of the Total Environment
1 публикация, 1.56%
ISPRS Journal of Photogrammetry and Remote Sensing
1 публикация, 1.56%
IEEE Geoscience and Remote Sensing Letters
1 публикация, 1.56%
Mathematical Problems in Engineering
1 публикация, 1.56%
Theoretical and Applied Climatology
1 публикация, 1.56%
Advances in Intelligent Systems and Computing
1 публикация, 1.56%
Sustainability
1 публикация, 1.56%
AIP Conference Proceedings
1 публикация, 1.56%
Journal of Geophysical Research Atmospheres
1 публикация, 1.56%
Spatial Information Research
1 публикация, 1.56%
AGU Advances
1 публикация, 1.56%
Journal of Cleaner Production
1 публикация, 1.56%
Remote Sensing of Environment
1 публикация, 1.56%
Agronomy
1 публикация, 1.56%
Modern Cartography Series
1 публикация, 1.56%
Ecological Informatics
1 публикация, 1.56%
IEEE Geoscience and Remote Sensing Magazine
1 публикация, 1.56%
2
4
6
8
10
12

Издатели

5
10
15
20
Elsevier
20 публикаций, 31.25%
MDPI
19 публикаций, 29.69%
Institute of Electrical and Electronics Engineers (IEEE)
10 публикаций, 15.63%
Springer Nature
4 публикации, 6.25%
Copernicus
2 публикации, 3.13%
American Geophysical Union
2 публикации, 3.13%
IWA Publishing
1 публикация, 1.56%
Hindawi Limited
1 публикация, 1.56%
AIP Publishing
1 публикация, 1.56%
LLC Kartfond
1 публикация, 1.56%
The Korean Society of Remote Sensing
1 публикация, 1.56%
World Scientific
1 публикация, 1.56%
SAGE
1 публикация, 1.56%
5
10
15
20
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
64
Поделиться
Цитировать
ГОСТ |
Цитировать
Sarafanov M. et al. A machine learning approach for remote sensing data gap-filling with open-source implementation: An example regarding land surface temperature, surface albedo and ndvi // Remote Sensing. 2020. Vol. 12. No. 23. pp. 1-21.
ГОСТ со всеми авторами (до 50) Скопировать
Sarafanov M., Kazakov E., Nikitin N. O., Kalyuzhnaya A. V. A machine learning approach for remote sensing data gap-filling with open-source implementation: An example regarding land surface temperature, surface albedo and ndvi // Remote Sensing. 2020. Vol. 12. No. 23. pp. 1-21.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/rs12233865
UR - https://doi.org/10.3390/rs12233865
TI - A machine learning approach for remote sensing data gap-filling with open-source implementation: An example regarding land surface temperature, surface albedo and ndvi
T2 - Remote Sensing
AU - Sarafanov, Mikhail
AU - Kazakov, Eduard
AU - Nikitin, Nikolay O
AU - Kalyuzhnaya, Anna V
PY - 2020
DA - 2020/11/25
PB - MDPI
SP - 1-21
IS - 23
VL - 12
SN - 2072-4292
SN - 2315-4632
SN - 2315-4675
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Sarafanov,
author = {Mikhail Sarafanov and Eduard Kazakov and Nikolay O Nikitin and Anna V Kalyuzhnaya},
title = {A machine learning approach for remote sensing data gap-filling with open-source implementation: An example regarding land surface temperature, surface albedo and ndvi},
journal = {Remote Sensing},
year = {2020},
volume = {12},
publisher = {MDPI},
month = {nov},
url = {https://doi.org/10.3390/rs12233865},
number = {23},
pages = {1--21},
doi = {10.3390/rs12233865}
}
MLA
Цитировать
Sarafanov, Mikhail, et al. “A machine learning approach for remote sensing data gap-filling with open-source implementation: An example regarding land surface temperature, surface albedo and ndvi.” Remote Sensing, vol. 12, no. 23, Nov. 2020, pp. 1-21. https://doi.org/10.3390/rs12233865.