The Effect of Data Transformation on Singular Spectrum Analysis for Forecasting
Data transformations are an important tool for improving the accuracy of forecasts from time series models. Historically, the impact of transformations have been evaluated on the forecasting performance of different parametric and nonparametric forecasting models. However, researchers have overlooked the evaluation of this factor in relation to the nonparametric forecasting model of Singular Spectrum Analysis (SSA). In this paper, we focus entirely on the impact of data transformations in the form of standardisation and logarithmic transformations on the forecasting performance of SSA when applied to 100 different datasets with different characteristics. Our findings indicate that data transformations have a significant impact on SSA forecasts at particular sampling frequencies.