Open Access
Open access
Vibration, volume 7, issue 4, pages 1063-1085

Modular Modeling of a Half-Vehicle System Using Generalized Receptance Coupling and Frequency-Based Substructuring (GRCFBS)

Publication typeJournal Article
Publication date2024-11-11
Journal: Vibration
scimago Q2
SJR0.466
CiteScore3.2
Impact factor1.9
ISSN2571631X
Abstract

This paper presents an advanced modular modeling approach for vertical vibration analysis of dynamic systems using the Generalized Receptance Coupling and Frequency-Based Substructuring (GRCFBS) method. The focus is on a four-DoF half-vehicle model comprising three key subsystems: front suspension, rear suspension, and the vehicle’s trimmed body. The proposed technique is designed to predict dynamic responses in reconfigurable systems across various applications, including automotive, robotics, mechanical machinery, and aerospace structures. By coupling the receptance matrices (FRFs) of individual vehicle modules, the overall system receptance matrix is efficiently derived in a disassembled configuration. Two generalized coupling methods, originally developed by Jetmundsen and D.D. Klerk, are employed to determine the complete vehicle’s receptance matrix from its subsystems. Validation is achieved by comparing the results with established methods, such as direct solution and modal analysis, demonstrating high accuracy and reliability for complex dynamic systems. This modular approach allows for the creation of reduced-order models focused on key measurement points without the need for detailed system representation. The method offers significant advantages in early-stage vehicle development, providing critical insights into system vibration behavior.

Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?