Open Access
Open access
том 2022 страницы 1-13

Superlow Power Consumption Artificial Synapses Based on WSe2 Quantum Dots Memristor for Neuromorphic Computing

Zhongrong Wang 1
Wei Wang 1
Pan Liu 1
Gongjie Liu 1
Jiahang Li 1
JIANHUI ZHAO 1
Zhenyu Zhou 1
Jingjuan Wang 1
Yifei Pei 1
Zhen Zhao 1
Jiaxin Li 1
Lei Wang 1
Zixuan Jian 1
Yichao Wang 2
Jianxin Guo 3
Xiaobing Yan 1
Тип публикацииJournal Article
Дата публикации2022-09-13
scimago Q1
wos Q1
БС1
SJR2.299
CiteScore13.3
Impact factor10.7
ISSN26395274, 23341009, 20965168
Multidisciplinary
Краткое описание

As the emerging member of zero-dimension transition metal dichalcogenide, WSe2 quantum dots (QDs) have been applied to memristors and exhibited better resistance switching characteristics and miniaturization size. However, low power consumption and high reliability are still challenges for WSe2 QDs-based memristors as synaptic devices. Here, we demonstrate a high-performance, superlow power consumption memristor device with the structure of Ag/WSe2 QDs/La0.3Sr0.7MnO3/SrTiO3. The device displays excellent resistive switching memory behavior with a ROFF/RON ratio of ~5 × 103, power consumption per switching as low as 0.16 nW, very low set, and reset voltage of ~0.52 V and~ -0.19 V with excellent cycling stability, good reproducibility, and decent data retention capability. The superlow power consumption characteristic of the device is further proved by the method of density functional theory calculation. In addition, the influence of pulse amplitude, duration, and interval was studied to gradually modulating the conductance of the device. The memristor has also been demonstrated to simulate different functions of artificial synapses, such as excitatory postsynaptic current, spike timing-dependent plasticity, long-term potentiation, long-term depression, and paired-pulse facilitation. Importantly, digit recognition ability based on the WSe2 QDs device is evaluated through a three-layer artificial neural network, and the digit recognition accuracy after 40 times of training can reach up to 94.05%. This study paves a new way for the development of memristor devices with advanced significance for future low power neuromorphic computing.

Найдено 
Найдено 

Топ-30

Журналы

1
2
3
ACS applied materials & interfaces
3 публикации, 16.67%
SSRN Electronic Journal
1 публикация, 5.56%
Research
1 публикация, 5.56%
Applied Surface Science
1 публикация, 5.56%
Acta Physica Sinica
1 публикация, 5.56%
Frontiers of Physics
1 публикация, 5.56%
Materials Today Nano
1 публикация, 5.56%
ACS Applied Nano Materials
1 публикация, 5.56%
Sensors
1 публикация, 5.56%
Chemical Engineering Journal
1 публикация, 5.56%
Journal of Physics Materials
1 публикация, 5.56%
npj 2D Materials and Applications
1 публикация, 5.56%
Nanoscale
1 публикация, 5.56%
Nano Energy
1 публикация, 5.56%
ACS Nano
1 публикация, 5.56%
Applied Physics Reviews
1 публикация, 5.56%
1
2
3

Издатели

1
2
3
4
5
American Chemical Society (ACS)
5 публикаций, 27.78%
Elsevier
4 публикации, 22.22%
Springer Nature
2 публикации, 11.11%
Social Science Electronic Publishing
1 публикация, 5.56%
American Association for the Advancement of Science (AAAS)
1 публикация, 5.56%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
1 публикация, 5.56%
MDPI
1 публикация, 5.56%
IOP Publishing
1 публикация, 5.56%
Royal Society of Chemistry (RSC)
1 публикация, 5.56%
AIP Publishing
1 публикация, 5.56%
1
2
3
4
5
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
18
Поделиться
Цитировать
ГОСТ |
Цитировать
Wang Z. et al. Superlow Power Consumption Artificial Synapses Based on WSe2 Quantum Dots Memristor for Neuromorphic Computing // Research. 2022. Vol. 2022. pp. 1-13.
ГОСТ со всеми авторами (до 50) Скопировать
Wang Z., Wang W., Liu P., Liu G., Li J., ZHAO J., Zhou Z., Wang J., Pei Y., Zhao Z., Li J., Wang L., Jian Z., Wang Y., Guo J., Yan X. Superlow Power Consumption Artificial Synapses Based on WSe2 Quantum Dots Memristor for Neuromorphic Computing // Research. 2022. Vol. 2022. pp. 1-13.
RIS |
Цитировать
TY - JOUR
DO - 10.34133/2022/9754876
UR - https://doi.org/10.34133/2022/9754876
TI - Superlow Power Consumption Artificial Synapses Based on WSe2 Quantum Dots Memristor for Neuromorphic Computing
T2 - Research
AU - Wang, Zhongrong
AU - Wang, Wei
AU - Liu, Pan
AU - Liu, Gongjie
AU - Li, Jiahang
AU - ZHAO, JIANHUI
AU - Zhou, Zhenyu
AU - Wang, Jingjuan
AU - Pei, Yifei
AU - Zhao, Zhen
AU - Li, Jiaxin
AU - Wang, Lei
AU - Jian, Zixuan
AU - Wang, Yichao
AU - Guo, Jianxin
AU - Yan, Xiaobing
PY - 2022
DA - 2022/09/13
PB - American Association for the Advancement of Science (AAAS)
SP - 1-13
VL - 2022
PMID - 36204247
SN - 2639-5274
SN - 2334-1009
SN - 2096-5168
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Wang,
author = {Zhongrong Wang and Wei Wang and Pan Liu and Gongjie Liu and Jiahang Li and JIANHUI ZHAO and Zhenyu Zhou and Jingjuan Wang and Yifei Pei and Zhen Zhao and Jiaxin Li and Lei Wang and Zixuan Jian and Yichao Wang and Jianxin Guo and Xiaobing Yan},
title = {Superlow Power Consumption Artificial Synapses Based on WSe2 Quantum Dots Memristor for Neuromorphic Computing},
journal = {Research},
year = {2022},
volume = {2022},
publisher = {American Association for the Advancement of Science (AAAS)},
month = {sep},
url = {https://doi.org/10.34133/2022/9754876},
pages = {1--13},
doi = {10.34133/2022/9754876}
}