Open Access
Open access
Beilstein Journal of Nanotechnology, volume 12, pages 1392-1403

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

Mikhail Krasnov
Natalia D Novikova
Roger Cattaneo
Alexey A Kalenyuk
Publication typeJournal Article
Publication date2021-12-21
scimago Q2
SJR0.520
CiteScore5.7
Impact factor2.6
ISSN21904286
General Physics and Astronomy
General Materials Science
Electrical and Electronic Engineering
Abstract

Impedance matching and heat management are important factors influencing the performance of terahertz sources. In this work we analyze thermal and radiative properties of such devices based on mesa structures of a layered high-temperature superconductor Bi2Sr2CaCu2O8+δ. Two types of devices are considered containing either a conventional large single crystal or a whisker. We perform numerical simulations for various geometrical configurations and parameters and make a comparison with experimental data for the two types of devices. It is demonstrated that the structure and the geometry of both the superconductor and the electrodes play important roles. In crystal-based devices an overlap between the crystal and the electrode leads to appearance of a large parasitic capacitance, which shunts terahertz emission and prevents impedance matching with open space. The overlap is avoided in whisker-based devices. Furthermore, the whisker and the electrodes form a turnstile (crossed-dipole) antenna facilitating good impedance matching. This leads to more than an order of magnitude enhancement of the radiation power efficiency in whisker-based, compared to crystal-based, devices. These results are in good agreement with presented experimental data.

Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?