Open Access
Open access
Beilstein Journal of Organic Chemistry, volume 20, pages 1614-1622

pKalculator: A pKa predictor for C–H bonds

Publication typeJournal Article
Publication date2024-07-16
scimago Q2
wos Q2
SJR0.517
CiteScore4.9
Impact factor2.2
ISSN18605397
Abstract

Determining the pKa values of various C–H sites in organic molecules offers valuable insights for synthetic chemists in predicting reaction sites. As molecular complexity increases, this task becomes more challenging. This paper introduces pKalculator, a quantum chemistry (QM)-based workflow for automatic computations of C–H pKa values, which is used to generate a training dataset for a machine learning (ML) model. The QM workflow is benchmarked against 695 experimentally determined C–H pKa values in DMSO. The ML model is trained on a diverse dataset of 775 molecules with 3910 C–H sites. Our ML model predicts C–H pKa values with a mean absolute error (MAE) and a root mean squared error (RMSE) of 1.24 and 2.15 pKa units, respectively. Furthermore, we employ our model on 1043 pKa-dependent reactions (aldol, Claisen, and Michael) and successfully indicate the reaction sites with a Matthew’s correlation coefficient (MCC) of 0.82.

Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex
Found error?