Acta Acustica united with Acustica, volume 105, issue 6, pages 1026-1034

Performance of a Low-Height Acoustic Screen for Urban Roads: Field Measurement and Numerical Study

Forssén J., Mauriz L.E., Torehammar C., Jean P., Axelsson Ö.
Publication typeJournal Article
Publication date2019-11-01
SJR
CiteScore
Impact factor
ISSN16101928, 18619959
Acoustics and Ultrasonics
Music
Abstract

Field measurements and numerical modelling were used to study the acoustic performance of a low screen in an urban road setting. The results show the usefulness of low screens as well as suggests improvements in screen design. For the measurements, an acoustic screen built up from concrete modules was temporarily installed beside a small park on the reservation between a two-lane road and a track for walking and cycling. A larger traffic system, of which the two-lane road is a part, determines the daytime equivalent noise level within the urban area. The screen height was about 1.4 m as measured from the level of the road surface and the width of the screen top was 0.3 m. Measurements were carried out both at 20 m distance from the road (within the park) and at 5 m distance from the road (at the cycle track). Insertion loss in maximum level, using controlled lightvehicle pass-by at 50 km/h, was measured to 10 dB at 5 m distance and to 6 dB at 20 m distance, at 1.5 m height. Insertion loss in equivalent level was measured within the park to 4 dB at 1.5 m height. A listening experiment confirmed a perceived improvement from installing the screen. The measured results were also compared with predicted results using a boundary element method (BEM) and a noise mapping software, the latter showing good agreement, overestimating the equivalent level insertion loss by 1 dB in the park. The BEM comparison showed reasonable agreement in maximum level insertion loss considering that facade reflections were excluded, with an overestimation of 5 dB at the cycle track, and good agreement in the park, overestimating by up to 1 dB the equivalent and maximum level insertion losses. BEM predictions were used to also investigate other screen designs, showing a positive effect of an acoustically soft screen top, significant for a screen width of 0.2 m and increasing for wider screens.

Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?