Acta Acustica united with Acustica, volume 105, issue 6, pages 1269-1277

A Canonicalization of Distinctive Phonetic Features to Improve Arabic Speech Recognition

Alotaibi Y.A., Selouani S., Yakoub M.S., Seddiq Y.M., Meftah A.
Publication typeJournal Article
Publication date2019-11-01
SJR
CiteScore
Impact factor
ISSN16101928, 18619959
Acoustics and Ultrasonics
Music
Abstract

The robustness of speech classification and recognition systems can be improved by the adoption of language distinctive phonetic feature (DPF) elements that can increase the effective characterization of a speech signal. This paper presents the results of applying Hidden Markov Models (HMMs) that perform Arabic phoneme recognition in conjunction with the inclusion and classification of their DPF element classes. The research focuses on classifying Modern Standard Arabic (MSA) phonemes within isolated words without a language context. HMM-based phoneme recognition is tested using 8, 16, and 32 HMM Gaussian mixture models. The monophone configuration is designed with consideration of 2-gram language model to evaluate the inherent performance of the system. The overall correct rates for classifying DPF element classes for the three versions of HMM systems are 83.29% 88.96%, and 92.70% for 8, 16, and 32 HMM Gaussian mixture model systems, respectively.

Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?