Open Access
Open access
Transport, volume 39, issue 4, pages 287-301

Railway transport system modelling approach for robustness analysis

Publication typeJournal Article
Publication date2024-12-31
Journal: Transport
scimago Q2
wos Q3
SJR0.319
CiteScore3.4
Impact factor1.3
ISSN16484142, 16483480
Abstract

The article presents an approach to train traffic modelling that allows for the analysis of how railway networks respond to various disturbances, including increased traffic and disturbance events. It discusses different methods of reconfiguration actions in key points of the railway network, which helps reduce delay propagation in the transport system. The 1st part covers building simulation models, which include defining infrastructure, setting train routes, configuring rolling stock, and disturbance scenarios, enabling the analysis of various disruptive events. The simulations allow for testing disturbance scenarios with minimal downtime risk without interfering with the real-world environment. The study results identified key system parameters generating the largest delays, such as platform availability, signaling, and the number of block sections. Probability density distributions for event intervals and durations were analyzed. The Kolmogorov–Smirnov test was used to confirm the fit of empirical distributions with theoretical ones, which were then implemented in the model of railway line No 271, running from Wrocław to Żmigród (Poland). As part of the reconfiguration of this railway line, new platforms were added, the time required for route setting was reduced, and the number of block sections was increased. These actions significantly reduced average delays, improved line capacity, and enhanced the robustness of the railway transport system against disturbances. The reconfiguration effectively reduced delays in areas causing significant time exceedances above 359 s, which was recognized in the Polish railway network as critical.

Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?