Open Access
Open access
Astrophysical Journal, volume 938, issue 1, pages 15

The Formation of Monosubstituted Cyclopropenylidene Derivatives in the Interstellar Medium via Neutral–Neutral Reaction Pathways

Publication typeJournal Article
Publication date2022-10-01
scimago Q1
SJR1.905
CiteScore8.4
Impact factor4.8
ISSN0004637X, 15384357
Space and Planetary Science
Astronomy and Astrophysics
Abstract

Five substituted cyclopropenylidene derivatives (c-C3HX, X=CN, OH, F, NH2), all currently undetected in the interstellar medium (ISM), are found herein to have mechanistically viable, gas-phase formation pathways through neutral–neutral additions of ·X onto c-C3H2. The detection and predicted formation mechanism of c-C3HC2H introduces a need for the chemistry of c-C3H2 and any possible derivatives to be more fully explored. Chemically accurate CCSD(T)-F12/cc-pVTZ-F12 calculations provide exothermicities of additions of various radical species to c-C3H2, alongside energies of submerged intermediates that are crossed to result in product formation. Of the novel reaction mechanisms proposed, the addition of the cyano radical is the most exothermic at -16.10 kcal mol−1. All five products are found to or are expected to have at least one means of associating barrierlessly to form a submerged intermediate, a requirement for the cold chemistry of the ISM. The energetically allowed additions arise as a result of the strong electrophilicity of the radical species as well as the product stability gained through substituent-ring conjugation.

Found 
Found 

Top-30

Journals

1
2
3
4
1
2
3
4

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?