Mathematical Foundations of Computing, volume 2, issue 2, pages 169-181
An RKHS approach to estimate individualized treatment rules based on functional predictors
Jun Fan
1
,
Fusheng Lv
2
Publication type: Journal Article
Publication date: 2019-07-08
scimago Q3
SJR: 0.363
CiteScore: 1.5
Impact factor: 1.3
ISSN: 25778838
Computational Mathematics
Computational Theory and Mathematics
Artificial Intelligence
Theoretical Computer Science
Abstract
In recent years there has been massive interest in precision medicine, which aims to tailor treatment plans to the individual characteristics of each patient. This paper studies the estimation of individualized treatment rules (ITR) based on functional predictors such as images or spectra. We consider a reproducing kernel Hilbert space (RKHS) approach to learn the optimal ITR which maximizes the expected clinical outcome. The algorithm can be conveniently implemented although it involves infinite-dimensional functional data. We provide convergence rate for prediction under mild conditions, which is jointly determined by both the covariance kernel and the reproducing kernel.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.