volume 57 pages 45-51

A formal approach to Menger's theorem

Publication typeJournal Article
Publication date2022-11-28
scimago Q2
wos Q4
SJR0.160
CiteScore0.4
Impact factor<0.1
ISSN01372904, 20842589
Abstract

Menger's graph theorem equates the minimum size of a separating set for non-adjacent vertices a and b with the maximum number of disjoint paths between a and b. By capturing separating sets as models of an entailment relation, we take a formal approach to Menger's result. Upon showing that inconsistency is characterised by the existence of suficiently many disjoint paths, we recover Menger's theorem by way of completeness.

Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Share
Cite this
GOST |
Cite this
GOST Copy
Bonacina R., Misselbeck-Wessel D. A formal approach to Menger's theorem // Reports on Mathematical Logic. 2022. Vol. 57. pp. 45-51.
GOST all authors (up to 50) Copy
Bonacina R., Misselbeck-Wessel D. A formal approach to Menger's theorem // Reports on Mathematical Logic. 2022. Vol. 57. pp. 45-51.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.4467/20842589rm.22.003.16660
UR - https://www.ejournals.eu/rml/Number-57/art/22416/
TI - A formal approach to Menger's theorem
T2 - Reports on Mathematical Logic
AU - Bonacina, Roberta
AU - Misselbeck-Wessel, Daniel
PY - 2022
DA - 2022/11/28
PB - Uniwersytet Jagiellonski - Wydawnictwo Uniwersytetu Jagiellonskiego
SP - 45-51
VL - 57
SN - 0137-2904
SN - 2084-2589
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Bonacina,
author = {Roberta Bonacina and Daniel Misselbeck-Wessel},
title = {A formal approach to Menger's theorem},
journal = {Reports on Mathematical Logic},
year = {2022},
volume = {57},
publisher = {Uniwersytet Jagiellonski - Wydawnictwo Uniwersytetu Jagiellonskiego},
month = {nov},
url = {https://www.ejournals.eu/rml/Number-57/art/22416/},
pages = {45--51},
doi = {10.4467/20842589rm.22.003.16660}
}