Open Access
Open access
том 19 издание 6 страницы 1705-1721

Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms

Тип публикацииJournal Article
Дата публикации2022-03-24
scimago Q1
wos Q1
БС1
SJR1.645
CiteScore7.4
Impact factor3.9
ISSN17264170, 17264189
Ecology, Evolution, Behavior and Systematics
Earth-Surface Processes
Краткое описание

Abstract. Dimethyl sulfide (DMS) is a volatile biogenic gas with the potential to influence regional climate as a source of atmospheric aerosols and cloud condensation nuclei (CCN). The complexity of the oceanic DMS cycle presents a challenge in accurately predicting sea surface concentrations and sea–air fluxes of this gas. In this study, we applied machine-learning methods to model the distribution of DMS in the northeast subarctic Pacific (NESAP), a global DMS hot spot. Using nearly two decades of ship-based DMS observations, combined with satellite-derived oceanographic data, we constructed ensembles of 1000 machine-learning models using two techniques: random forest regression (RFR) and artificial neural networks (ANN). Our models dramatically improve upon existing statistical DMS models, capturing up to 62 % of observed DMS variability in the NESAP and demonstrating notable regional patterns that are associated with mesoscale oceanographic variability. In particular, our results indicate a strong coherence between DMS concentrations, sea surface nitrate (SSN) concentrations, photosynthetically active radiation (PAR), and sea surface height anomalies (SSHA), suggesting that NESAP DMS cycling is primarily influenced by heterogenous nutrient availability, light-dependent processes and physical mixing. Based on our model output, we derive summertime, sea–air flux estimates of 1.16 ± 1.22 Tg S in the NESAP. Our work demonstrates a new approach to capturing spatial and temporal patterns in DMS variability, which is likely applicable to other oceanic regions.

Найдено 
Найдено 

Топ-30

Журналы

1
2
Biogeosciences
2 публикации, 11.76%
Journal of Geophysical Research Atmospheres
2 публикации, 11.76%
Earth System Science Data
2 публикации, 11.76%
npj Climate and Atmospheric Science
2 публикации, 11.76%
Microorganisms
1 публикация, 5.88%
Science of the Total Environment
1 публикация, 5.88%
Limnology and Oceanography
1 публикация, 5.88%
Nature Reviews Earth & Environment
1 публикация, 5.88%
Frontiers in Marine Science
1 публикация, 5.88%
PLoS ONE
1 публикация, 5.88%
Proceedings of the National Academy of Sciences of the United States of America
1 публикация, 5.88%
ACS ES&T Water
1 публикация, 5.88%
Atmospheric Chemistry and Physics
1 публикация, 5.88%
1
2

Издатели

1
2
3
4
5
Copernicus
5 публикаций, 29.41%
Springer Nature
3 публикации, 17.65%
American Geophysical Union
2 публикации, 11.76%
MDPI
1 публикация, 5.88%
Elsevier
1 публикация, 5.88%
Wiley
1 публикация, 5.88%
Frontiers Media S.A.
1 публикация, 5.88%
Public Library of Science (PLoS)
1 публикация, 5.88%
Proceedings of the National Academy of Sciences (PNAS)
1 публикация, 5.88%
American Chemical Society (ACS)
1 публикация, 5.88%
1
2
3
4
5
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
17
Поделиться
Цитировать
ГОСТ |
Цитировать
McNabb B. J., Tortell P. D. Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms // Biogeosciences. 2022. Vol. 19. No. 6. pp. 1705-1721.
ГОСТ со всеми авторами (до 50) Скопировать
McNabb B. J., Tortell P. D. Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms // Biogeosciences. 2022. Vol. 19. No. 6. pp. 1705-1721.
RIS |
Цитировать
TY - JOUR
DO - 10.5194/bg-19-1705-2022
UR - https://bg.copernicus.org/articles/19/1705/2022/
TI - Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms
T2 - Biogeosciences
AU - McNabb, Brandon J.
AU - Tortell, Philippe D.
PY - 2022
DA - 2022/03/24
PB - Copernicus
SP - 1705-1721
IS - 6
VL - 19
SN - 1726-4170
SN - 1726-4189
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_McNabb,
author = {Brandon J. McNabb and Philippe D. Tortell},
title = {Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms},
journal = {Biogeosciences},
year = {2022},
volume = {19},
publisher = {Copernicus},
month = {mar},
url = {https://bg.copernicus.org/articles/19/1705/2022/},
number = {6},
pages = {1705--1721},
doi = {10.5194/bg-19-1705-2022}
}
MLA
Цитировать
McNabb, Brandon J., et al. “Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms.” Biogeosciences, vol. 19, no. 6, Mar. 2022, pp. 1705-1721. https://bg.copernicus.org/articles/19/1705/2022/.