Open Access
Open access
том 14 издание 7 страницы 4357-4378

BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains

Chun-Hsu Su 1
Nathan Eizenberg 2
Dörte Jakob 1
Paul Fox-Hughes 3
Peter Steinle 1
Christopher J. White 4, 5
C. Franklin 1
Тип публикацииJournal Article
Дата публикации2021-07-12
scimago Q1
wos Q1
БС1
SJR1.967
CiteScore7.8
Impact factor4.9
ISSN1991959X, 19919603
Краткое описание

Abstract. Regional reanalyses provide a dynamically consistent recreation of past weather observations at scales useful for local-scale environmental applications. The development of convection-permitting models (CPMs) in numerical weather prediction has facilitated the creation of kilometre-scale (1–4 km) regional reanalysis and climate projections. The Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA) also aims to realize the benefits of these high-resolution models over Australian sub-regions for applications such as fire danger research by nesting them in BARRA's 12 km regional reanalysis (BARRA-R). Four midlatitude sub-regions are centred on Perth in Western Australia, Adelaide in South Australia, Sydney in New South Wales (NSW), and Tasmania. The resulting 29-year 1.5 km downscaled reanalyses (BARRA-C) are assessed for their added skill over BARRA-R and global reanalyses for near-surface parameters (temperature, wind, and precipitation) at observation locations and against independent 5 km gridded analyses. BARRA-C demonstrates better agreement with point observations for temperature and wind, particularly in topographically complex regions and coastal regions. BARRA-C also improves upon BARRA-R in terms of the intensity and timing of precipitation during the thunderstorm seasons in NSW and spatial patterns of sub-daily rain fields during storm events. BARRA-C reflects known issues of CPMs: overestimation of heavy rain rates and rain cells, as well as underestimation of light rain occurrence. As a hindcast-only system, BARRA-C largely inherits the domain-averaged bias pattern from BARRA-R but does produce different climatological extremes for temperature and precipitation. An added-value analysis of temperature and precipitation extremes shows that BARRA-C provides additional skill over BARRA-R when compared to gridded observations. The spatial patterns of BARRA-C warm temperature extremes and wet precipitation extremes are more highly correlated with observations. BARRA-C adds value in the representation of the spatial pattern of cold extremes over coastal regions but remains biased in terms of magnitude.

Найдено 
Найдено 

Топ-30

Журналы

1
2
3
Geophysical Research Letters
3 публикации, 9.09%
Journal of Hydrology
2 публикации, 6.06%
International Journal of Climatology
2 публикации, 6.06%
Journal of Geophysical Research Atmospheres
2 публикации, 6.06%
International Journal of Wildland Fire
2 публикации, 6.06%
Journal of Southern Hemisphere Earth Systems Science
2 публикации, 6.06%
Climate Dynamics
2 публикации, 6.06%
Fire
1 публикация, 3.03%
Weather and Climate Extremes
1 публикация, 3.03%
Urban Climate
1 публикация, 3.03%
Energies
1 публикация, 3.03%
Fisheries Oceanography
1 публикация, 3.03%
Meteorological Applications
1 публикация, 3.03%
Earth's Future
1 публикация, 3.03%
Atmosphere
1 публикация, 3.03%
Environmental Research Letters
1 публикация, 3.03%
International Journal of Biometeorology
1 публикация, 3.03%
Natural Hazards
1 публикация, 3.03%
Geoscientific Model Development
1 публикация, 3.03%
Atmospheric Chemistry and Physics
1 публикация, 3.03%
Hydrology and Earth System Sciences
1 публикация, 3.03%
Wiley Interdisciplinary Reviews Water
1 публикация, 3.03%
Wind Energy Science
1 публикация, 3.03%
1
2
3

Издатели

1
2
3
4
5
6
7
8
9
Wiley
9 публикаций, 27.27%
CSIRO Publishing
5 публикаций, 15.15%
Elsevier
4 публикации, 12.12%
Springer Nature
4 публикации, 12.12%
Copernicus
4 публикации, 12.12%
MDPI
3 публикации, 9.09%
American Geophysical Union
2 публикации, 6.06%
IOP Publishing
1 публикация, 3.03%
1
2
3
4
5
6
7
8
9
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
33
Поделиться
Цитировать
ГОСТ |
Цитировать
Su C. et al. BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains // Geoscientific Model Development. 2021. Vol. 14. No. 7. pp. 4357-4378.
ГОСТ со всеми авторами (до 50) Скопировать
Su C., Eizenberg N., Jakob D., Fox-Hughes P., Steinle P., White C. J., Franklin C. BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains // Geoscientific Model Development. 2021. Vol. 14. No. 7. pp. 4357-4378.
RIS |
Цитировать
TY - JOUR
DO - 10.5194/gmd-14-4357-2021
UR - https://doi.org/10.5194/gmd-14-4357-2021
TI - BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains
T2 - Geoscientific Model Development
AU - Su, Chun-Hsu
AU - Eizenberg, Nathan
AU - Jakob, Dörte
AU - Fox-Hughes, Paul
AU - Steinle, Peter
AU - White, Christopher J.
AU - Franklin, C.
PY - 2021
DA - 2021/07/12
PB - Copernicus
SP - 4357-4378
IS - 7
VL - 14
SN - 1991-959X
SN - 1991-9603
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Su,
author = {Chun-Hsu Su and Nathan Eizenberg and Dörte Jakob and Paul Fox-Hughes and Peter Steinle and Christopher J. White and C. Franklin},
title = {BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains},
journal = {Geoscientific Model Development},
year = {2021},
volume = {14},
publisher = {Copernicus},
month = {jul},
url = {https://doi.org/10.5194/gmd-14-4357-2021},
number = {7},
pages = {4357--4378},
doi = {10.5194/gmd-14-4357-2021}
}
MLA
Цитировать
Su, Chun-Hsu, et al. “BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains.” Geoscientific Model Development, vol. 14, no. 7, Jul. 2021, pp. 4357-4378. https://doi.org/10.5194/gmd-14-4357-2021.