Biofeedback, volume 47, issue 4, pages 89-103

Z-Score EEG Biofeedback: Past, Present, and Future

Robert W. Thatcher 1
Joel F. Lubar 2
J. Lucas Koberda 3
1
 
EEG and NeuroImaging Laboratory, Applied Neuroscience Research Institute, St. Petersburg, FL
2
 
Southeastern Neurofeedback Institute, Pompano Beach, FL
3
 
Neurology, PL/Brain Enhancement Inc., Tallahassee, FL
Publication typeJournal Article
Publication date2019-12-01
Journal: Biofeedback
SJR
CiteScore
Impact factor
ISSN10815937, 2158348X
General Chemistry
General Medicine
Abstract

Human electroencephalogram (EEG) biofeedback (neurofeedback) started in the 1940s using one EEG recording channel, then four channels in the 1990s, and in 2004, expanded to 19 channels using Low Resolution Electromagnetic Tomography (LORETA) of the microampere three-dimensional current sources of the EEG. In 2004–2006 the concept of a real-time comparison of the EEG to a healthy reference database was developed and tested using surface EEG z score neurofeedback based on a statistical bell curve called real-time z scores. The real-time or live normative reference database comparison was developed to help reduce the uncertainty of what threshold to select to activate a feedback signal and to unify all EEG measures to a single value (i.e., the distance from the mean of an age-matched reference sample). In 2009 LORETA z score neurofeedback further increased specificity by targeting brain network hubs referred to as Brodmann areas. A symptom checklist program to help link symptoms to dysregulation of brain networks based on fMRI and positron emission tomography (PET) and neurology was created in 2009. The symptom checklist and National Institutes of Health–based networks linking symptoms to brain networks grew out of the human brain mapping program started in 1990 that continues today. A goal is to increase specificity of EEG biofeedback by targeting brain network hubs and connections between hubs likely linked to the patient's symptoms. Developments first introduced in 2017 provide increased resolution of three-dimensional source localization with 12,700 voxels using swLORETA with the capacity to conduct cerebellar neurofeedback and neurofeedback of subcortical brain hubs such as the thalamus, amygdala, and habenula. Future applications of swLORETA z score neurofeedback represent another example of the transfer of knowledge gained by the human brain mapping initiatives to further aid in helping people with cognition problems as well as balance problems and parkinsonism. A brief review of the past, present, and future predictions of z score neurofeedback are discussed with special emphasis on new developments that point toward a bright and enlightened future in the field of EEG biofeedback.

Top-30

Journals

1
2
1
2

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?