Bulletin of the National Technical University «KhPI» Series New solutions in modern technologies

National Technical University Kharkiv Polytechnic Institute
ISSN: 24134295, 20795459

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
journal names
Bulletin of the National Technical University «KhPI» Series New solutions in modern technologies
Publications
2
Citations
0
h-index
0

Most cited in 5 years

Found 
from chars
Publications found: 1030
Treatment of Simulated Dumpsite Leachate Using Fly Ash in the Constructed Wetland
Anjaneyulu Bendi, Kaushik A., Chetal A., Singh S.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
Fly ash is the primary residue produced in huge amounts by coal combustion in thermal power plants, which needs to be utilized appropriately. In this connection, an experimental study was conducted with fly ash alone and in combination with soil for the treatment of simulated dumpsite leachate in constructed wetland (CW) (vertical flow) systems containing Canna + Typha plants. The study revealed that the fly ash + soil mixture as a CW substrate showed better removal efficiency of chemical oxygen demand (COD), phosphate ( $${\text{PO}}_{4}^{{3 - }}$$ ), total nitrogen (TN), and chloride (Cl–) by 97.3, 99.4, 94.5, and 89.6%, respectively, in comparison to the fly ash alone which was shown to yield the corresponding values of 88.5, 94.1, 84, and 73.2% of the efficiency in the removal of these pollutants from simulated dumpsite leachate.
Analysis of Natural Water Quality in the Dniester River Basin for Economic Utilization
Chobotar V.V., Kopilevich V.A., Kravchenko O.O.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
Small rivers and other surface and groundwater sources form the basis for the functioning of river basin systems, shaping streamflow, providing water supply for rural areas, and supporting biodiversity. Local surface and groundwater sources are extremely sensitive to anthropogenic impacts and climate change. Changes in the quality and quantity of water in these sources are a primary factor influencing their use for various purposes, objects, methods, and technical conditions. Therefore, the research aimed to assess the quality of natural waters in the southern part of the Mohyliv-Podilskyi district, within the basin of the small river Kotlubayevka (a right tributary of the Dniester River). The primary research methods were analytical and statistical. The analytical method was used to determine the chemical composition of water samples according to standardized procedures. The statistical method was used to find out the reliability of measurement results and to provide a generalized assessment of water quality. Experimental results were processed for water samples based on ecological and sanitary criteria from eight potential sources of economic use located along the slopes of the Dniester and Kotlubayevka river basins, ranging from elevations of 215–206 to 78–55 m a.s.l. According to the ecological classification of surface water quality, the studied sources are classified as fresh oligotrophic (class I), and based on ion composition criteria, they are categorized as bicarbonate waters of type I ( $${\text{HCO}}_{3}^{ - }$$ > Ca2+ + Mg2+). The study identified a trend of water source contamination in the research area concerning copper, iron (Fetotal), and saprophytic bacteria Escherichia coli. A generalized ecological assessment of water was calculated using block indices for salinity composition, ecological-sanitary, and specific toxic indicators, which ranged from 2.33 to 3.00 along the slope above the river currents. The results indicate that the quality of the studied water sources ranges from “very good,” “clean,” to “good,” “fairly clean.” However, based on the block index for specific toxic indicators, the water quality tends to approach “fairly good” or “slightly polluted.” Among the water contaminants, elevated levels of Fetotal, Cu2+, and E. coli primarily contribute to the deterioration of water quality and safety. Iron and copper contamination should be regarded as a natural factor, while microbiological contamination by E. coli should be considered a result of anthropogenic impact. The obtained research results impose limitations on the economic use of certain water sources, particularly in agricultural production.
Grafted Amberlite 200C Resin for Enhanced Salicylic Acid Adsorption
Fairouz Saad Saoud, Berbar Y., Amara M.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
Removing relatively concentrated salicylic acid (SA) from pharmaceutical aqueous waste was performed using unmodified and modified commercial cationic exchange resin (Amberlite 200C). The modification of the resin involved grafting functional molecules onto the aromatic ring through classical organic reactions or by irreversible adsorption into the resin’s structure. The nitro group ( $${\text{NO}}_{2}^{ + }$$ ) was synthesized by combining nitric and sulfuric acids and then attached to the resin matrix through nitration. Meanwhile, 2,4-dinitrophenyl hydrazine (DNPH), tributyl phosphate (TBP), and ammonium ( $${\text{NH}}_{4}^{ + }$$ ) were irreversibly adsorbed onto the resin matrix via immersion. Consequently, the unmodified resin achieved a 21% elimination of the initial SA, whereas modified resins significantly increased the elimination yield. Specifically, $${\text{NH}}_{4}^{ + }$$ and DNPH-modified resins achieved SA elimination rates of 51.94 and 41.5%, respectively. However, the use of TBP and $${\text{NO}}_{2}^{ + }$$ modified resins resulted in negligible SA removal. The optimal conditions for operation were determined to be: pH 5.5, temperature 21°C, and a contact time of 20 min.
Photometric Analysis for Trichlorophenoxyacetic Acid in Water and Bottom Sediments with the Use of Extraction
Kormosh Z.O., Matskiv O.O., Horbatiuk N.M., Bokhan Y.V., Yurchenko O.M., Shevchuk M.V.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
2,4,5-Trichlorophenoxyacetic acid was shown to form an ion associate (IA) with astrafloxin FF (AF), a polymethine dye. Based on mathematical modeling, the energy efficiency of the formation of an ion associate was substantiated. The molecular modeling of 2,4,5-T– + AF+ systems and related calculations were carried out by the HyperChem 8.0 software for different initial mutual arrangements of counterions (“single point” procedure). The geometric optimization of ions was performed by the molecular mechanics method MM+. The formed ion associates were readily extractable by different aromatic hydrocarbons. The maximum IA extraction from the aqueous phase was attained at pH of 4.5–12.0. The effect of the dye concentration on the absorbance of the toluene extracts of 2,4,5-T– + AF+ ion associates was studied. The IA extraction was maximal at a dye concentration of (1.5–3.0) × 10–4 M. Extraction equilibrium was attained for 50–60 s. The stoichiometry of 2,4,5-T– + AF+ ion associates was established by the spectrophotometric isomolar series and equilibrium shift methods; the ratio of components was 1 : 1. The scheme of the formation and extraction of ion associates was proposed. The conditional molar extinction coefficient of the ion associates was 1.2 × 105. The calibration extract absorbance–2,4,5-T concentration curve was described by a linear equation А = 0.012 + 0.062c within a 2,4,5-T concentration range of 1.50–58.07 µg/cm3. The 2,4,5-T detection limit calculated from the 3s criterion (n = 5, Р = 0.95) was 0.8 µg/cm3. The intralaboratory discrepancy of the calibration curve for the determination of 2,4,5-trichlorophenoxyacetic acid was estimated by using the Cochrane test G. The calculated value of this test (n = 5, P = 0.95) was lower than the tabular value, i.e., Gcalcd = 0.25 < Gtab = 0.64 to evidence variance homogeneity. A method of photometric extraction analysis for 2,4,5-trichlorophenoxyacetic acid in water and bottom sediments was developed.
Insight on an Eco-Friendly Flocculation Using Cactus Extracts: Synthetic Dye and Heavy Metals Removal
Bouthaina Othmani, Moncef Khadhraoui
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
Over these last years, there is no doubt that the conventional chemical flocculants commonly used for wastewater treatment have been a source of serious human health threats and environmental damage. Consequently, safe and eco-friendly substitutes are worth looking for and assessing. Within this line, flocculants derived from cactus namely, cladodes juice (CJ), powders of lyophilized (CLP) and oven-dried (CDP) cladodes, were developed as alternatives to the noxious synthetic ones. The flocculating activity of these three extracts was evaluated in treating a synthetic Disperse Blue-1 (DB-1) dye solution and a real industrial effluent loaded with heavy metals. A prominent DB-1 removal of up to 80% was achieved using CJ, CLP and CDP. Significant colour and turbidity reductions (94%) were attained using only 20 mg/L of CLP. Likewise, the cactus bio-flocculants complementing alum as a coagulant ensured an enhanced Zn removal from the industrial wastewater. For instance, both CLP and CDP allowed salient Zn uptake exceeding 99% against 69% using the CJ formula. The slight disparity in the flocculating activity between these three formulations could be ascribed to their preparation procedures affecting the integrity of their active agents (polysaccharides and chiefly polygalacturonic acid). Further, it is thought that the presence of hydroxyl (–OH) and carboxyl (–COOH) groups on this latter’s backbone confers the cactus extracts a notable flocculating ability regardless of the type of water pollutants. The plausible flocculation mechanisms for DB-1 molecules and Zn removal are assumed to be adsorption-bridging and adsorption-charge neutralization, respectively.
Assessment of Ecological and Potential Health Risk Caused by Nitrate Pollution of the Berdan and Göksu River Basins, Turkey
İsmail Akçay, Özgür Özbay
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
To determine ecological and health risk assessment of the Berdan and Göksu river waters, principal physical and biochemical variables were measured monthly between September 2021 and August 2022 in the Berdan and Göksu river basins. Ecological risk assessment of the studied river basins indicated that both the Berdan and Göksu river waters were contaminated by phosphorus. Potential health risk assessment of the Berdan and Göksu river basins showed that the calculated Health Quotient values in the two visited stations in the Berdan river exceeded 0.1 indicating low cancer risk for both adults and children whilst one visited station in the Göksu River basin showed low cancer risk for children. The health risk assessment also indicated that the Health Quotient values calculated for children were consistently higher than those calculated for adults, showing that children were potentially at higher risk for health hazards from nitrate.
Using Iron-Based Adsorbents for the Removal of Inorganic Ecotoxicants from Aquatic Systems
Kobets S.A., Demutskaya L.M., Pshinko G.M.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
The study investigates the adsorption of heavy metals (HMs), specifically Cd(II) and Co(II), from aqueous solutions using synthesized iron oxides with layered structures and surface groups of a basic nature: goethite α-FeO(OH), lepidocrocite γ-FeO(OH), and ferrihydrite Fe(OH)3. The results indicate that these crystalline materials are effective in adsorbing heavy metals within pH ranges typical of natural aquatic environments (7.5). We determined the conditions for extracting heavy metals, examining the effect of pH in aqueous solutions, ionic strength, adsorbent dosage, and major components of natural waters. The results show that the majority of HM ions are extracted within the first 30 min of contact between the aqueous solution and the solid phase of the adsorbents, with adsorption equilibrium being reached for iron-containing adsorbents in approximately 4 h. To account for the relative distribution of HM species in aqueous environments with varying pH values, we calculated the distribution of these species for the concentrations studied in model water solutions, enabling an evaluation of the extraction mechanism. The adsorption of Co(II) and Cd(II) is primarily driven by the interaction of their cationic forms with ferrinol surface groups of the studied iron-containing minerals through chemisorption from aqueous solutions within the investigated pH range. The adsorption limits for goethite and ferrihydrite are nearly identical, while those for lepidocrocite are significantly lower, which can be attributed to their structure and the availability of active adsorption sites. The shape of the adsorption isotherm curves is also quite similar across the entire concentration range. Based on the data obtained regarding the adsorption efficiency of Cd(II) and Co(II), which are among the most challenging cations to remove using adsorption methods, the synthesized goethite and ferrihydrite can be recommended as cost-effective and efficient materials for the purification of natural waters contaminated with heavy metals.
Assessing the Presence of Metals in Surface Waters: A Case Study Conducted in Algeria Using a Combination of Artificial Neural Networks and Multiple Indices
Hadjer Keria, Zoubiri A., Bensaci E., Said Z.B., Guelil A.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
Elevated concentrations of heavy metals in wetlands can contaminate surface water, posing hazards to human health and ecological balance. Given increasing urbanization and activities in places like Algeria, it is crucial to closely monitor and effectively control heavy metal pollution in surface water. This study proposes the use of artificial neural networks (ANN) and various indicators to comprehensively assess metal contamination in Algerian surface waters and its implications for public health. Sixteen water samples were collected for the composition analysis and source identification. Measurements indicated that several areas exceed the World Health Organization (WHO) limits for four metals. Methods such as the heavy metal evaluation index (HEI) and heavy metal pollution index (HPI) were employed to assess pollution levels. Results showed that over 99% of samples exhibited significant pollution according to HPI, with 60% showing elevated pollution levels by HEI, highlighting substantial contamination risks. Principal component analysis (PCA) revealed that the first two components accounted for 93.540% of total variation, with subsequent components contributing 6.459% or less. PCA 1 and PCA 2, representing 49.084 and 44.456% of variability, respectively, were identified as primary components, while PCA 3 and PCA 4 each contributed less than 5.015 and 1.444% to total variance. The study demonstrated minimal error values and R2 values exceeding 0.5 during the testing of heavy metal models, indicating robust performance. Overall, this study underscores the prevalence of elevated metal levels in water bodies, providing comprehensive insights into heavy metal contamination in Algerian basins to assist environmental management decisions and protect public health.
Effect of Solar Activity Cycles on the Dnipro Water Quality Parameters
Kulishenko O.Y., Klymenko N.A., Nevinna L.V.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
The historical development of viewpoints on the effect of solar activity on climatic phenomena is analyzed as possible mediators in the generation of water quality changes. The quality of water delivered to the water treatment facilities of the Dnipro Water Supply Station (DWSS) in Kiev after the Kyiv Reservoir is studied. It is shown that such parameters as color and oxidability are caused by organic substances, the presence of which in water correlates with solar activity in a certain way. Using cross-correlation and wavelet analyses, the existence of a moderate correlations between solar activity and turbidity, iron and manganese content, permanganate oxidability, and total organic carbon content is shown. These parameters are likely to be varied due to climatic conditions and water supply source hydrology changes, inclusively, in the balance of water inflow to the Kyiv Reservoir.
Preparation of New Carbonaceous Adsorbents Based on Agricultural Waste and Its Application to the Elimination of Crystal Violet Dye from Water Media
Boumessaidia Selmane, Nourrdine C., Eddine K.H., Ouerida M., Abdelkader O.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
In this work, the Washingtonia palm stems were used as a novel precursor to product biochar (BCW) and activated carbon (CAW). The resulting CAW and BCW samples were characterized by N2 adsorption−desorption, scanning electron microscopy (SEM) and pH of zero-charge point (pHPZC). The results show a very large specific surface area and pore volume for CAW (SBET = 1032 m2/g, V = 1.1 cm3/g) compared to BCW (SBET = 357 m2/g, V = 0.27 cm3/g). The SEM images show a more or less regular porous shape for both samples. The obtained values of pHPZC were 5.2 and 6 for CAW and BCW samples, respectively. The ionic strength from 0 to 1.0 M greatly affects the adsorption capacity of Crystal Violet (CV) on BCW unlike that for CAW. The adsorption process occurred quickly and the kinetic data were well described by the pseudo first order (PFO), pseudo second order (PSO), Elovich and Avrami models. The maximum adsorption capacity of CV on CAW and BCW calculated from the Langmuir model was 328 and 93 mg/g respectively at 35°C. The values of the average free energy determined by the Dubinin–Radushkevich model are less than 8 kJ/mol, indicative of physisorption. The thermodynamic study at different solution temperatures (15, 25, and 35°C) shows that the adsorption process occurred spontaneously (∆G° < 0) and was exothermic for CAW and BCW (∆H° = –28.66 and –38.46 kJ/mol, respectively).
The Potential of Acid Hydrolysis as Pre-Treatment for Improved Nutrient Recovery from Domestic Wastewater
Carla Mae Pausta, Devendra Saroj
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
Domestic wastewaters have a significant concentration of nutrients that can be utilised as alternative sources of phosphorus and nitrogen for agriculture applications. Chemical precipitation is one of the processes found to be an efficient way for nutrient recovery from various wastewater feedstock. However, not all nutrients are in a form that can be readily recovered. Therefore, a pre-treatment process may be necessary for an efficient recovery of nitrogen and phosphorus. In this research, acid hydrolysis was performed as pre-treatment to release phosphorus from synthetic septage into soluble forms for the subsequent precipitation as struvite (MgNH4PO4·6H2O) which is known as a slow-release fertiliser for application in agriculture. Results show that acid hydrolysis increases the phosphate concentration (PO4-P) to 148.07 ± 1.78 from 61.50 ± 0.07 mg/L, showing the potential of hydrolysis as pre-treatment to efficiently recover nutrients in the form of struvite. The result can inform further research to develop efficient processes for the recovery of nutrients from domestic wastewater.
Floating Amphiphilic Biomass-Based Material Obtained by Plasma Processing for Enhanced Wastewater Remediation
Nehemie Miloh, Tarkwa J., Sop-Tamo B., Mbafou C.F., Kouotou P.M., Acayanka E., Kamgang G.Y.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
A self-floating amphiphilic biosorbent (SFAB) was prepared by dispersing the plasma-modified water hyacinth (WH) (Eichhornia crassipes) fibers on the beeswax support. The synthesis process takes advantage of the functionalising properties of plasma with polar groups (–OH, –CO, –COOH) and the binding effect of beeswax. The characteristics of the obtained biosorbent exhibited significant changes in surface chemistry and roughness confirmed by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The resulting functionalised material offers appropriate anchoring sites for pollutants leading to a biomaterial with hydrophilic and lipophilic properties. The removal performance of the SFAB outperforms the natural biomass fibers taking alone, with an uptake capacity of 20.83 mg/g for merbromin (MB) (50 mg/L) and 19.90 mg/g for Green Naphthol B (GNB) (50 mg/L), based on the successfully fitted general-order kinetic model. The effects of some key adsorption parameters were optimised, and the equilibrium data (298–323 K) were best fitted by the Liu isotherm reaching 47.20 and 36.40 mg/g of uptake amounts for MB and GNB, respectively at 298 K. The removal mechanism is governed by π–π interplay, hydrophobic interaction, and hydrogen bonding effects.
The Study of the Photocatalytic Degradation of Orange II Dye with Wastewater Using New Pyrochlore Solid Solutions Bi1.5Sb1.5Zn1–xCuxO7 as Photocatalysts
Zouaoui Kheira, Mayouf S., Bennabi S., Fadia M., Cherifa M.D.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
In this present work, photocatalysts based on a new pyrochlore-type solid solution were prepared using the ceramic method at 1000°C. X-ray diffraction (XRD) analysis shows the existence of a solid solution with pyrochlore structure Bi1.5Sb1.5Zn1–xCuxO7 (0 ≤ x ≤ 1). Scanning Electron Microscope (SEM) images exhibited a slight difference in the external morphology of the samples. The UV-diffuse measurement revealed a change in the absorbance from the UV part for the zinc-rich compound to the visible part for the copper-rich compound. The Energy band gap values were between 3.15 and 1.84 eV. The photocatalytic activity of these prepared mixed oxides was studied for the photo-degradation of the dye Orange II (ORII) as an organic pollutant, in the presence of hydrogen peroxide (H2O2) as an oxidising agent, under sunlight irradiation, by varying different parameters such as the catalysts mass, the oxidant volume, the concentration of the pollutant and the pH. The experimental results obtained by UV-visible spectroscopy revealed that the removal efficiency of ORII increased with increasing the irradiation time for all tested photocatalysts. The pseudo-first-order kinetic model gave the best fit, with the highest correlation coefficients (R2 = 0.99). The results of this study revealed the potential and various advantages of these new efficient photocatalysts.
Determination of Trace Cobalt in Water Samples by Ionic Liquid-Dispersive Liquid–Liquid Microextraction and Graphite Furnace Atomic Absorption Spectrometry
Yaqi Liu, Han Q., Huo Y., Yang X.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
A new method for the determination of ultra-trace cobalt by ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) and graphite furnace atomic absorption spectrometry (GFAAS) was developed. The trace cobalt was extracted by DLLME using the homemade reagent 2-(5-bromo-2-pyridylazo)-5-dimethylaminobenzenamine (5-Br-PADMA) as chelating agent, the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6mim][PF6]) as extractant, and acetonitrile (CH3CN) as dispersing agent, and then determined by GFAAS. The factors affecting the cobalt extraction efficiency: the type and volume of extraction solvent and dispersive solvent, the concentration and dosage of chelating agent, and the pH of the solution, were explored using the one-way rotation method. Under the optimized conditions, the cobalt concentration showed excellent linearity in the range of 0.05–1.50 ng/mL with the detection limit of 0.026 ng/mL; the relative standard deviation (RSD) for the determination of the cobalt standard solution with the mass concentration of 1.0 ng/mL was 4.83% (n = 9). From the slope of the linear regression equation for the determination of cobalt obtained after extraction compared with that before extraction, the enrichment factor of the method was found to be 62, and the spiked recoveries were in the range of 94.0–104.4%. The method is characterized by low detection limit, high sensitivity, and environment friendliness as well as convenient and rapid operation for the determination of trace cobalt in water samples. The results of this method are satisfactory.
Optimized Dewaxed Honeycomb Powder as a Promising and Eco-Friendly Alternative for the Removal of Malachite Green through Fixed Bed Column
Roshni Kumari, Khan M.A., Mahto M., Qaiyum M.A., Mohanta J., Dey B., Samal P.P., Sambasivaiah B., Dey S.
Q4 Journal of Water Chemistry and Technology 2024 citations by CoLab: 0  |  Abstract
A fixed-bed column study for the removal of malachite green (MG) from the aqueous phase was demonstrated using strategically dewaxed honeycomb powder (HCP). The removal efficiency was tested at several working parameters of the column, in particular, the column bed height, initial dye concentration, working pH, and the flow rate. Breakthrough curves have been plotted using the throughput volume versus concentration ratio for different parameters to identify the pathway of uptake. Thomas and bed depth service time (BDST) kinetic models have been applied to obtain the rate constants and the uptake capacity. The BDST model suggests an adsorption capacity of 196.28 mg L–1. The column performance was seen to vary with solution pH and was found favourable at higher pH values. The adsorption rate decreases with increasing flow rate but increases with increasing concentration of the dye. Easy regeneration ensures multi-cycle operations. The mechanism of dye adsorption by HCP has been proposed as a blend of electrostatic attraction and weak forces. Henceforth, the use of HCP for the removal of MG in column mode may be extrapolated to serve as a promising agent in the treatment of dye-containing water and wastewater.