Head of Laboratory

Korzhik, Mikhail V

Publications
297
Citations
14329
h-index
38
Publications
331
Citations
22546
h-index
44
Authorization required.
Lab team

The laboratory's work is aimed at researching and creating new fluorescent materials, primarily scintillators, and methods for their production. Scintillators are materials that luminesce when interacting with ionizing radiation and, due to this effect, are used to register these emissions. Such materials are used in medical imaging equipment (X–ray computed tomography, PET), in remote baggage or transport inspection systems, in research equipment, including in detector installations at particle accelerators, for example, at the Large Hadron Collider. The development of these materials makes it possible to improve the characteristics of the equipment using them and increase its availability.

  1. Luminescence
  2. Luminescence lifetime
  3. Photoluminescence
  4. Scintillation kinetics
  5. X-ray phase analysis
  6. Inductively coupled plasma mass spectrometry
  7. Scanning electron microscopy (SEM)
  8. Differential Thermal Analysis (DTA)
  9. Inductively coupled plasma atomic emission spectrometry
  10. Various types of inorganic syntheses: hydro (solvo) thermal, sol-gel, solid-phase
  11. Scintillation light output
Mikhail Korzhik
Head of Laboratory
Daria Lelekova 🥼 🤝
Head of Division
Ilia Komendo 🥼 🤝
Deputy Head of Division
Sokolov, Pert S
Pert Sokolov
Senior Researcher
Akimova, Olga V.
Olga Akimova
Senior Researcher
Petr Karpyuk
Researcher
Anna Amelina
Researcher
Valentina Smyslova
Junior researcher
Valery Dubov
Junior researcher
Ermakova, Lydia V
Lydia Ermakova
Research assistant

Research directions

Scintillation coatings

+
Scintillation coatings
Scintillation coatings are used in neutron radiography installations. And if you apply a coating on scintillation plastic, thus obtaining a phosphor detector (Phosphor + Sandwich), you can separate signals from different types of ionizing radiation.

3D printing of ceramics

+
3D printing of ceramics
Forming ceramics using 3D printing allows you to obtain products of complex shapes, for example, in the form of a cellular structure — a "grid" for monitoring the profile of charged particle beams. Our group became the first in the world to print scintillation ceramics on a 3D printer and measure its properties (article in CrystEngComm 2017,19, 4260-4264). It is also possible to print a reflective matrix using this method to place scintillation pixels in position-sensitive ionizing radiation detectors. This approach is applicable to the formation of pixel matrices, but is still under development.

Scintillation glasses

+
Scintillation glasses
The scintillation glasses developed by our group have two applications: "light" ones based on lithium disilicate are designed to detect thermal neutrons against gamma quanta, and "heavy" ones based on barium, gadolinium, silicon oxides for neutron and gamma radiation detection.

Scintillation ceramics

+
Scintillation ceramics
Transparent ceramics based on complex oxides with a garnet structure are a potentially cheaper and technologically advanced replacement for monocrystalline scintillation detector elements in medical and inspection equipment. Also, such ceramics are a promising candidate for the conversion of ionizing radiation energy into light in photovoltaic energy sources. The adjustment of scintillation properties to certain applications is possible due to compositional disordering — the creation of multicomponent solid substitution solutions.

Publications and patents

Илья Юрьевич Комендо, Андрей Анатольевич Федоров, Виталий Александрович МЕЧИНСКИЙ, Георгий Алексеевич Досовицкий, Василий Михайлович Ретивов, Михаил Васильевич Коржик, Виктор Сергеевич Щукин, Александр Леонидович Михлин
RU2795750C1, 2023
Илья Юрьевич Комендо, Андрей Анатольевич Федоров, Виталий Александрович МЕЧИНСКИЙ, Георгий Алексеевич Досовицкий, Василий Михайлович Ретивов, Михаил Васильевич Коржик
RU2781041C1, 2022
Михаил Васильевич Коржик, Андрей Анатольевич Федоров, Виталий Александрович МЕЧИНСКИЙ, Георгий Алексеевич Досовицкий
RU2724133C1, 2020
Екатерина Вадимовна Гордиенко, Алексей Ефимович Досовицкий, Георгий Алексеевич Досовицкий, Петр Викторович Карпюк, Михаил Васильевич Коржик, Дарья Евгеньевна Кузнецова, Виталий Александрович МЕЧИНСКИЙ, Василий Михайлович Ретивов, Андрей Анатольевич Федоров
RU2711318C2, 2019
Петр Сергеевич Соколов, Михаил Васильевич Коржик, Дмитрий Александрович Комиссаренко, Андрей Анатольевич Федоров, Георгий Алексеевич Досовицкий, Алексей Ефимович Досовицкий
RU2711219C1, 2020
Екатерина Сергеевна Ващенкова, Екатерина Вадимовна Гордиенко, Алексей Ефимович Досовицкий, Георгий Алексеевич Досовицкий, Михаил Васильевич Коржик, Дарья Евгеньевна Кузнецова, Виталий Александрович МЕЧИНСКИЙ, Александр Леонидович Михлин, Андрей Анатольевич Федоров
RU2682554, 2019
Михаил Васильевич Коржик, Андрей Анатольевич Федоров, Виталий Александрович МЕЧИНСКИЙ, Алексей Ефимович Досовицкий, Георгий Алексеевич Досовицкий
RU2663683, 2018
Екатерина Вадимовна Гордиенко, Алексей Ефимович Досовицкий, Георгий Алексеевич Досовицкий, Михаил Васильевич Коржик, Дарья Евгеньевна Кузнецова, Виталий Александрович МЕЧИНСКИЙ, Андрей Анатольевич Федоров
RU2647222C1, 2018
Владимир Владимирович Аленков, Олег Алексеевич Бузанов, Алексей Ефимович Досовицкий, Георгий Алексеевич Досовицкий, Михаил Васильевич Коржик, Андрей Анатольевич Федоров
RU2646407C1, 2018

Partners

Lab address

107076, Москва, Богородский вал, 3
Authorization required.