12 February 2022, 1:00

Химики создали модель деградации материалов имплантатов в жидкостях организма

Российские ученые исследовали поведение биорезорбируемого сплава магния в условиях, приближенных к тем, что есть в организме. В условиях in vitro они выяснили, как влияют состав и локальные отличия поверхности кальцийсодержащего сплава магния Mg-0,8Ca на его коррозию, а также описали характер и особенности электрохимических процессов, протекающих на сплаве. Получившаяся на их основе модель поможет разработать безопасные, биоактивные и разлагаемые материалы для имплантатов. Статья по работе, поддержанной грантами Российского научного фонда (РНФ), опубликована в журнале Journal of Magnesium and Alloys.

Химики создали модель деградации материалов имплантатов в жидкостях организма
Микроструктура сплава и распределение элементов на нем после суток в среде для культивирования клеток

В настоящее время имплантаты широко применяют во многих областях медицины, таких как ортопедия, сердечно-сосудистая хирургия, травматология и другие, а потому усовершенствование материалов, используемых для их изготовления, является одним из важных направлений. Традиционно это неразлагающиеся (химически стойкие) металлы и сплавы, однако имплантаты на их основе, несмотря на свою максимальную стабильность, имеют ряд ограничений. Так, они не деградируют, из-за чего может потребоваться повторная операция для удаления имплантата после выздоровления пациента, а их износ вызывает воспаление в организме человека.

Перспективной альтернативой могут служить биоразлагаемые металлические материалы, и наиболее обещающие среди них — магний (Mg) и его сплавы. Сам по себе магний подвержен слишком быстрой коррозии в организме и не может использоваться без антикоррозионной защиты. Но и в этом случае необходимо сначала изучить механизм его деградации, например, с помощью локального электрохимического in situ анализа: установление взаимосвязи между гетерогенностью материала (то есть разностью свойств в разных его частях) и его локальной коррозионной активностью позволят сформировать на поверхности сплавов защитные покрытия. В дальнейшем такая система станет основой имплантатов, обеспечивающих достаточную механическую прочность и стабильность, необходимую для полного восстановления костной ткани. Затем материал будет растворяться и безопасно утилизироваться в организме.

«Мы выбрали кальций-магниевый сплав, который безвреден для живых систем, так как элементы, входящие в него, постоянно присутствуют в организме человека. По мере деградации они будут высвобождаться и включаться в процессы восстановления кости, ускоряя заживление», — рассказал руководитель проекта Андрей Гнеденков, доктор химических наук, ведущий научный сотрудник Института химии ДВО РАН.

Российские ученые из Института химии ДВО РАН (Владивосток) проверили, как сплав Mg-0,8Ca ведет в себя в жидкостях, имитирующих биологические. Его исследовали в среде для культивирования клеток и в физрастворе, наблюдая за потерей веса, изменениями структуры и химического состава поверхностных слоев. Для этого авторы применяли традиционные и локальные сканирующие электрохимические методы. В результате им удалось разработать модели того, как сплав деградирует в жидкостях, аналогичных тем, что есть в организме.

Так, результаты анализа демонстрируют, что добавление кальция в магниевый сплав увеличивает деградацию материала за счет усиления протекающий электрохимических реакций — на участках, где примеси было больше, процесс шел быстрее. Кроме того, исследователи отметили, что в среде для культивирования на поверхности сплава образовывалась пленка из гидроксиапатита (он также входит в состав костей и зубов), однако и она не сильно повлияла на устойчивость сплава к коррозии.

«Система многообещающая, и мы развиваем теоретические основы коррозионной деградации сплавов магния, перспективных для использования в качестве биодеградируемых имплантатов. В дальнейшем мы планируем разработать новые физико-химические методы обработки и исследования свойств материалов. Это позволит повысить их функциональность и эффективность в различных областях науки и техники, а также создать новые функциональные системы и покрытия», — добавил Андрей Гнеденков.

Source:  Пресс-служба РНФ

News article publications

Found 

Read also

Углеродные нанотрубки в сочетании с полимерами помогут создать искусственные клапаны сердца
Созданный биоматериал можно использовать для получения сердечно-сосудистых имплантатов, например искусственных клапанов сердца и сосудов, способных выдерживать длительные нагрузки, создаваемые током крови.
Bioengineering
Materials Science
Nanotechnology
16 March 2022
Антипов Евгений Викторович
https://colab.ws/researchers/R-31196-0EA95-FM19Q https://orcid.org/0000-0002-8886-8829 https://www.scopus.com/authid/detail.uri?authorId=7102236080 https://www.webofscience.com/wos/author/record/A-4138-2014
Materials Science
18 November 2025
Предсказаны новые галогениды для солнечной и водородной энергетики
Ученые обнаружили 67 новых соединений галогенов (хлора, брома, фтора и иода), которые потенциально могут существовать в двумерном виде, что открывает широкие перспективы их применения в прикладных задачах, например, при создании приборов для преобразования солнечной энергии. Проанализировав эти вещества, авторы выяснили, что некоторые из них способны извлекать из воды водород под действием солнечного света. Водород — перспективное топливо для «зеленой» энергетики, и обнаруженные соединения позволят удешевить его получение в три раза.
"Green" chemistry
Energy industry
Materials Science
18 March 2024
Высокоэнергичные ионы превратили графен в наноалмазы
Ученые получили стабильный материал, состоящий из графена и наноалмазов, облучив многослойный графен быстрыми тяжелыми ионами. Возможность управлять механическими свойствами нового наноструктурированного материала в сочетании с легкостью и гибкостью графена открывает перспективы для его использования в космической авиации, автомобильной промышленности и медицинских устройствах.
Materials Science
Mechanics of materials
Mechanochemistry
17 March 2024
Тугоплавкие сплавы позволят выдерживать температуры до 1000°С
Ученые доказали, что жаростойкость и прочность тугоплавких сплавов не зависят от количества входящих в их состав компонентов, как считалось ранее. Самую высокую жаростойкость при 1000°С показал сплав из трех металлов, а именно ниобия, титана и хрома, тогда как лучшую прочность продемонстрировал сплав из ниобия и хрома. Это открытие позволит разрабатывать перспективные сплавы для производства двигателей нового поколения, не требующих систем охлаждения.
High temperature materials
Materials Science
Metals and their alloys
15 March 2024
Новый класс материалов ускорит разработку безопасных аккумуляторов
Химики нашли новый класс материалов, который сможет ускорить разработку мультивалентных металл-ионных аккумуляторов. В отличие от литий-ионных аккумуляторов, такие накопители будут безопаснее в эксплуатации и значительно дешевле.
"Green" chemistry
Chemical technology
Materials Science
18 February 2024